If the displacement \( y \) (in cm) of a particle executing simple harmonic motion is given by the equation:
\[ y = 5 \sin(3 \pi t) + 5 \sqrt{3} \cos(3 \pi t) \]
then the amplitude of the particle is:
Show Hint
For any equation of form \( y = a\sin \theta + b\cos \theta \), the amplitude is always \( \sqrt{a^2 + b^2} \).
Step 1: Rewrite in standard form
The given equation is:
\[ y = 5 \sin(3 \pi t) + 5 \sqrt{3} \cos(3 \pi t) \]
Step 2: Use trigonometric identity
We can express this as:
\[ y = A \sin(3 \pi t + \phi) \]
where amplitude \( A = \sqrt{a^2 + b^2} \)
Step 3: Calculate amplitude
Here \( a = 5 \), \( b = 5 \sqrt{3} \):
\[ A = \sqrt{5^2 + (5 \sqrt{3})^2} = \sqrt{25 + 75} = \sqrt{100} = 10 \, \text{cm} \]