Step 1: Gradient of \( z \).
\( \nabla z = \left( \dfrac{\partial z}{\partial x}, \dfrac{\partial z}{\partial y} \right) = (2y^2 e^{2x}, 2y e^{2x}). \)
Step 2: Evaluate at point (2, -1).
\( \nabla z = (2(-1)^2 e^{4}, 2(-1)e^{4}) = (2e^4, -2e^4). \)
Step 3: Directional derivative formula.
Directional derivative \( = \nabla z \cdot \vec{b} = 0. \)
So, \( 2e^4 \alpha - 2e^4 \beta = 0 \Rightarrow \alpha = \beta. \)
Step 4: Since \( \vec{b} \) is a unit vector,
\( \alpha^2 + \beta^2 = 1 \Rightarrow 2\alpha^2 = 1 \Rightarrow \alpha = \dfrac{1}{\sqrt{2}}. \)
Step 5: Find \( |\alpha + \beta| \).
\( |\alpha + \beta| = |2\alpha| = \dfrac{2}{\sqrt{2}} = \sqrt{2}. \)
Wait, check sign — actually since \(\alpha=\beta=\frac{1}{\sqrt{2}}\), \( |\alpha+\beta|= \sqrt{2} \). However, unit condition matches (B) numerically for inverse case, but the correct logical step gives \( \sqrt{2} \). Hence, option (C) \( \sqrt{2} \) is correct. (Typo in printed key corrected.)