For a binomial distribution:
\[
\text{Mean} = n p = 4
\]
\[
\text{Variance} = n p q = 2
\]
where \( q = 1-p \)
Now,
\[
\frac{\text{Variance}}{\text{Mean}} = q
\]
\[
\frac{2}{4} = 0.5 = q
\]
So, \( p = 0.5 \)
Then, find \( n \):
\[
n \times 0.5 = 4 \Rightarrow n = 8
\]
Now,
\[
P(X=1) = \binom{8}{1} (0.5)^1 (0.5)^{7}
\]
\[
= 8 \times (0.5)^8
\]
\[
= 8 \times \frac{1}{256}
\]
\[
= \frac{8}{256} = \frac{1}{32}
\]