Step 1: Define the Binomial Distribution
A binomial distribution is given by:
\[
X \sim B(n, p)
\]
where:
- \( n \) is the number of trials,
- \( p \) is the probability of success.
The mean and standard deviation of a binomial distribution are:
\[
\text{Mean} = \mu = np
\]
\[
\text{Standard Deviation} = \sigma = \sqrt{np(1 - p)}
\]
Step 2: Given Conditions and Forming Equations
We are given:
\[
\mu - \sigma = 3
\]
\[
\mu^2 - \sigma^2 = 21
\]
Substituting \( \mu = np \) and \( \sigma^2 = np(1 - p) \):
\[
np - \sqrt{np(1 - p)} = 3
\]
Squaring both sides:
\[
% Option
(np)^2 - np(1 - p) = 21
\]
Step 3: Solve for \( n \) and \( p \)
Let \( x = np \), so we rewrite the equations:
\[
x - \sqrt{x(1 - p)} = 3
\]
Squaring both sides:
\[
x^2 - x(1 - p) = 21
\]
Rewriting \( x(1 - p) \) from the first equation:
\[
(x - 3)^2 = x(1 - p)
\]
Substituting in the second equation:
\[
x^2 - (x - 3)^2 = 21
\]
Expanding:
\[
x^2 - (x^2 - 6x + 9) = 21
\]
\[
x^2 - x^2 + 6x - 9 = 21
\]
\[
6x = 30
\]
\[
x = 5
\]
Since \( x = np = 5 \), substituting back into the first equation:
\[
5 - \sqrt{5(1 - p)} = 3
\]
\[
\sqrt{5(1 - p)} = 2
\]
Squaring:
\[
5(1 - p) = 4
\]
\[
1 - p = \frac{4}{5}
\]
\[
p = \frac{1}{5}
\]
Since \( np = 5 \), we find \( n \):
\[
n \cdot \frac{1}{5} = 5
\]
\[
n = 25
\]
Step 4: Compute Probability Ratio
The binomial probability formula is:
\[
P(x = k) = \binom{n}{k} p^k (1 - p)^{n - k}
\]
For \( P(x = 1) \):
\[
P(x = 1) = \binom{25}{1} \left(\frac{1}{5}\right)^1 \left(\frac{4}{5}\right)^{24}
\]
For \( P(x = 2) \):
\[
P(x = 2) = \binom{25}{2} \left(\frac{1}{5}\right)^2 \left(\frac{4}{5}\right)^{23}
\]
Taking their ratio:
\[
\frac{P(x = 1)}{P(x = 2)} = \frac{\binom{25}{1} \cdot \frac{1}{5} \cdot \left(\frac{4}{5}\right)^{24}}{\binom{25}{2} \cdot \frac{1}{5^2} \cdot \left(\frac{4}{5}\right)^{23}}
\]
\[
= \frac{25 \times \frac{1}{5}}{\frac{25 \times 24}{2} \times \frac{1}{25}}
\]
\[
= \frac{5}{\frac{600}{2}}
\]
\[
= \frac{5}{300}
\]
\[
= \frac{1}{3}
\]
Thus:
\[
P(x = 1) : P(x = 2) = 1 : 3
\]