The acceleration due to gravity on the surface of the earth is given by:
\(g = \frac{GM}{R^2}\)
where \( G \) is the gravitational constant, \( M \) is the mass of the earth, and \( R \) is the radius of the earth.
If the diameter of the earth is reduced to half, the radius \( R \) will also be reduced to half, becoming \( \frac{R}{2} \). Substituting \( R' = \frac{R}{2} \) into the formula for \( g \), we get:
\(g' = \frac{GM}{(R/2)^2} = \frac{GM}{R^2/4} = 4 \cdot \frac{GM}{R^2} = 4g\)
Thus, the new acceleration due to gravity on the surface of the earth would be \( 4g \).
The acceleration due to gravity at a height of 6400 km from the surface of the earth is \(2.5 \, \text{ms}^{-2}\). The acceleration due to gravity at a height of 12800 km from the surface of the earth is (Radius of the earth = 6400 km)
The motion of an airplane is represented by the velocity-time graph as shown below. The distance covered by the airplane in the first 30.5 seconds is km.
The least acidic compound, among the following is
Choose the correct set of reagents for the following conversion:
In the real world, everything is always in motion. Objects move at a variable or a constant speed. When someone steps on the accelerator or applies brakes on a car, the speed of the car increases or decreases and the direction of the car changes. In physics, these changes in velocity or directional magnitude of a moving object are represented by acceleration.