We are given that the conjugate of \( (x + iy)(1 - 2i) \) is \( 1 + i \).
First, express the product \( (x + iy)(1 - 2i) \):
\[
(x + iy)(1 - 2i) = x(1 - 2i) + iy(1 - 2i)
\]
Expanding the terms:
\[
x(1 - 2i) = x - 2ix
\]
\[
iy(1 - 2i) = iy - 2i^2y = iy + 2y
\]
Thus:
\[
(x + iy)(1 - 2i) = (x + 2y) + i(y - 2x)
\]
The conjugate of this expression is:
\[
(x + 2y) - i(y - 2x)
\]
We are given that the conjugate is \( 1 + i \), so we equate real and imaginary parts:
\[
x + 2y = 1 \quad \text{(real part)}
\]
\[
y - 2x = 1 \quad \text{(imaginary part)}
\]
Solving this system of equations:
1. From \( x + 2y = 1 \), we get \( x = 1 - 2y \).
2. Substitute \( x = 1 - 2y \) into \( y - 2x = 1 \):
\[
y - 2(1 - 2y) = 1
\]
\[
y - 2 + 4y = 1
\]
\[
5y = 3
\]
\[
y = \frac{3}{5}
\]
Substitute \( y = \frac{3}{5} \) into \( x = 1 - 2y \):
\[
x = 1 - 2 \times \frac{3}{5} = 1 - \frac{6}{5} = \frac{-1}{5}
\]
Thus, the values of \( x \) and \( y \) are \( x = \frac{-1}{5} \) and \( y = \frac{3}{5} \).
Finally, the expression for \( x + iy \) is:
\[
x + iy = \frac{1 - i}{1 - 2i}
\]
Thus, the correct answer is option (D)