In the binomial expansion of \( (1+x)^n \), the general term is given by \( T_k = \binom{n}{k}x^k \). Therefore, the coefficients of \( x^4 \), \( x^5 \), and \( x^6 \) are:
Since these coefficients are in an arithmetic progression, we can set up the condition:
\[ 2\binom{n}{5} = \binom{n}{4} + \binom{n}{6}. \]
Using the formula for binomial coefficients, we have:
\[ \binom{n}{k} = \frac{n!}{k!(n-k)!}. \]
After simplifying, we substitute and solve for \( n \) to find that the maximum value of \( n \) that satisfies this condition is \( n = 14 \).
Therefore, the maximum value of \( n \) is \( 14 \).
\[ \left( \frac{1}{{}^{15}C_0} + \frac{1}{{}^{15}C_1} \right) \left( \frac{1}{{}^{15}C_1} + \frac{1}{{}^{15}C_2} \right) \cdots \left( \frac{1}{{}^{15}C_{12}} + \frac{1}{{}^{15}C_{13}} \right) = \frac{\alpha^{13}}{{}^{14}C_0 \, {}^{14}C_1 \cdots {}^{14}C_{12}} \]
Then \[ 30\alpha = \underline{\hspace{1cm}} \]
Two circular discs of radius \(10\) cm each are joined at their centres by a rod, as shown in the figure. The length of the rod is \(30\) cm and its mass is \(600\) g. The mass of each disc is also \(600\) g. If the applied torque between the two discs is \(43\times10^{-7}\) dyne·cm, then the angular acceleration of the system about the given axis \(AB\) is ________ rad s\(^{-2}\).

Method used for separation of mixture of products (B and C) obtained in the following reaction is: 