If the coefficient of x10 in the binomial expansion of
\(\left(\frac{\sqrt{x}}{5^{\frac{1}{4}}} + \frac{\sqrt{5}}{x^{\frac{1}{3}}}\right)^{60}\)
is 5k.l, where l, k∈N and l is co-prime to 5, then k is equal to ___________.
The correct answer is 5
\(T_{r+1} = ^{60}C_r(x^{\frac{1}{2}})^{60-r}(x^{-\frac{1}{3}})r(5^{\frac{-1}{4}})^{60-r}(5^{\frac{1}{2}})^r\)
for
\(x^{10} \frac{60-r}{2}-\frac{r}{3}=10\)
\(⇒ 180-3r-2r=60\)
⇒ r = 24
∴ Coeff. of
\( x^{10} = \frac{^{60}C_{24}}{5^9} 5^{12}\) = 5k I
as I and 5 are coprime
k = 3 + exponent of 5 in \(^{60}C_{24}\)
\(= 3 + \left(\left\lfloor\frac{60}{5}\right\rfloor + \left\lfloor\frac{60}{5^2}\right\rfloor - \left\lfloor\frac{24}{5}\right\rfloor - \left\lfloor\frac{24}{5^2}\right\rfloor - \left\lfloor\frac{36}{5}\right\rfloor - \left\lfloor\frac{36}{5^2}\right\rfloor\right)\)
= 3 + (12 + 2 – 4 – 0 – 7 – 1)
= 3 + 2 = 5
Let $ a_0, a_1, ..., a_{23} $ be real numbers such that $$ \left(1 + \frac{2}{5}x \right)^{23} = \sum_{i=0}^{23} a_i x^i $$ for every real number $ x $. Let $ a_r $ be the largest among the numbers $ a_j $ for $ 0 \leq j \leq 23 $. Then the value of $ r $ is ________.
Let a line passing through the point $ (4,1,0) $ intersect the line $ L_1: \frac{x - 1}{2} = \frac{y - 2}{3} = \frac{z - 3}{4} $ at the point $ A(\alpha, \beta, \gamma) $ and the line $ L_2: x - 6 = y = -z + 4 $ at the point $ B(a, b, c) $. Then $ \begin{vmatrix} 1 & 0 & 1 \\ \alpha & \beta & \gamma \\ a & b & c \end{vmatrix} \text{ is equal to} $
The binomial expansion formula involves binomial coefficients which are of the form
(n/k)(or) nCk and it is calculated using the formula, nCk =n! / [(n - k)! k!]. The binomial expansion formula is also known as the binomial theorem. Here are the binomial expansion formulas.
This binomial expansion formula gives the expansion of (x + y)n where 'n' is a natural number. The expansion of (x + y)n has (n + 1) terms. This formula says:
We have (x + y)n = nC0 xn + nC1 xn-1 . y + nC2 xn-2 . y2 + … + nCn yn
General Term = Tr+1 = nCr xn-r . yr