The general term in the expansion of \((ax^3 + \frac{1}{bx^3})^{15}\) is given by:
\[ T_{r+1} = \binom{15}{r} \cdot a^{15-r} \cdot \left(\frac{1}{b}\right)^r \cdot x^{3(15-r) - 3r}. \]
Simplify the powers of \(x\):
\[ T_{r+1} = \binom{15}{r} \cdot a^{15-r} \cdot b^{-r} \cdot x^{45 - 6r}. \]
For the coefficient of \(x^{15}\), set \(45 - 6r = 15\):
\[ 45 - 15 = 6r \implies r = 9. \]
Thus, the coefficient of \(x^{15}\) is:
\[ \binom{15}{9} \cdot a^{6} \cdot b^{-9}. \]
The general term in the expansion of \(\left(\frac{a}{x^3} - \frac{1}{bx^3}\right)^{15}\) is given by:
\[ T_{r+1} = \binom{15}{r} \cdot \left(\frac{a}{x^3}\right)^{15-r} \cdot \left(-\frac{1}{bx^3}\right)^r. \]
Simplify the powers of \(x\):
\[ T_{r+1} = \binom{15}{r} \cdot a^{15-r} \cdot b^{-r} \cdot (-1)^r \cdot x^{-3(15-r) - 3r}. \]
The exponent of \(x\) becomes:
\[ -45 + 6r. \]
For the coefficient of \(x^{-15}\), set \(-45 + 6r = -15\):
\[ 6r = 30 \implies r = 6. \]
Thus, the coefficient of \(x^{-15}\) is:
\[ \binom{15}{6} \cdot a^{9} \cdot b^{-6}. \]
Equate the coefficients of \(x^{15}\) and \(x^{-15}\):
\[ \binom{15}{9} \cdot a^{6} \cdot b^{-9} = \binom{15}{6} \cdot a^{9} \cdot b^{-6}. \]
Since \(\binom{15}{9} = \binom{15}{6}\), cancel these terms:
\[ a^{6} \cdot b^{-9} = a^{9} \cdot b^{-6}. \]
Rearranging gives:
\[ \frac{a^6}{b^6} = \frac{b^9}{a^9}. \]
Cross-multiply:
\[ a^{15} \cdot b^9 = b^{15} \cdot a^9. \]
Divide both sides by \(a^9 b^9\):
\[ a^{6} = b^{6} \implies \frac{a}{b} = 1 \implies ab = 1. \]
The correct ordered pair satisfies \(ab = 1\).
The binomial theorem formula is used in the expansion of any power of a binomial in the form of a series. The binomial theorem formula is