Question:

If the angle bisector of \( \angle P \) meets \( QR \) at point \( M \), find the length of \( PM \).

Show Hint

When an angle bisector meets the opposite side, use the Angle Bisector Theorem to find segment ratios and apply the length formula.
Updated On: Jul 28, 2025
  • \( \dfrac{28\sqrt{5}}{9} \) cm
  • \( \dfrac{42\sqrt{5}}{11} \) cm
  • \( \dfrac{36\sqrt{3}}{7} \) cm
  • \( 4\sqrt{3} \) cm
Hide Solution
collegedunia
Verified By Collegedunia

The Correct Option is C

Solution and Explanation

From the previous question: - \( PQ = 12 \), \( PR = 9 \), \( \angle P = 60^\circ \), \( QR = 3\sqrt{13} \) Let angle bisector of \( \angle P \) meet QR at M. 
By Angle Bisector Theorem: \[ \frac{QM}{MR} = \frac{PQ}{PR} = \frac{12}{9} = \frac{4}{3} \Rightarrow QM = \frac{4}{7} QR, MR = \frac{3}{7} QR \] So: \[ QM = \frac{4}{7} 3\sqrt{13} = \frac{12\sqrt{13}}{7}, MR = \frac{9\sqrt{13}}{7} \] Use Angle Bisector Length Formula: \[ PM^2 = PQ PR \left[ 1 - \left( \frac{QR^2}{(PQ + PR)^2} \right) \right] \] Substitute: \[ PM^2 = 12 9 \left[ 1 - \left( \frac{(3\sqrt{13})^2}{(12 + 9)^2} \right) \right] = 108 \left[ 1 - \left( \frac{117}{441} \right) \right] = 108 \frac{324}{441} = \frac{34992}{441} \] Simplify: \[ PM = \sqrt{\frac{34992}{441}} = \sqrt{79.333...} \approx 8.9 \] Try options: (A) \( \dfrac{28\sqrt{5}}{9} \approx 8.72 \) 

(b) \( \dfrac{42\sqrt{5}}{11} \approx 8.62 \) 

(c) \( \dfrac{36\sqrt{3}}{7} \approx 8.86 \) 

(d) \( 4\sqrt{3} \approx 6.93 \)
Only option 
(c) matches approx. So, Final Answer: \( \boxed{\dfrac{36\sqrt{3}}{7}} \)

Was this answer helpful?
0
0