>
Exams
>
Quantitative Aptitude
>
Limits and Exponential Functions
>
if the 5th term of left 2x 2 frac 3 x right 5 is 1
Question:
If the 5th term of \( \left( 2x^2 + \frac{3}{x} \right)^5 \) is 10, then \( x = \)
Show Hint
In binomial expansions, carefully identify the correct term and simplify using the powers of the variables involved.
AP ICET - 2024
AP ICET
Updated On:
Apr 28, 2025
6
+9
-6
+8
Hide Solution
Verified By Collegedunia
The Correct Option is
B
Solution and Explanation
The general term in the expansion of \( (a + b)^n \) is given by: \[ T_{r+1} = \binom{n}{r} a^{n-r} b^r. \] For the expansion of \( \left( 2x^2 + \frac{3}{x} \right)^5 \), the 5th term corresponds to \( r = 4 \). Thus: \[ T_5 = \binom{5}{4} (2x^2)^{5-4} \left( \frac{3}{x} \right)^4 = 5 \times (2x^2) \times \frac{81}{x^4}. \] Simplifying: \[ T_5 = 5 \times 2x^2 \times \frac{81}{x^4} = 5 \times 2 \times 81 \times \frac{1}{x^2}. \] We are given that \( T_5 = 10 \), so: \[ 5 \times 2 \times 81 \times \frac{1}{x^2} = 10 \quad \Rightarrow \quad \frac{810}{x^2} = 10 \quad \Rightarrow \quad x^2 = 81 \quad \Rightarrow \quad x = 9. \]
Download Solution in PDF
Was this answer helpful?
0
0
Top Questions on Limits and Exponential Functions
Evaluate the following limit:
\[ \lim_{x \to \infty} \frac{(2x^2 - 3x + 5) \left( 3x - 1 \right)^{x/2}}{(3x^2 + 5x + 4) \sqrt{(3x + 2)^x}}. \]
The value of the limit is:
JEE Main - 2025
Mathematics
Limits and Exponential Functions
View Solution
If
\( \lim_{t \to \infty} \left( \int_0^{1} \left( 3x + 5 \right)^t dx \right) = \frac{\alpha}{5e} \left( \frac{8}{5} \right)^{\frac{3}{2}}, \) then \( \alpha \) is equal to ____ :
JEE Main - 2025
Mathematics
Limits and Exponential Functions
View Solution
If the function \( f \) defined by
\[ f(x) = \begin{cases} \dfrac{1 - \cos 4x}{x^2}, & x<0 \\ a, & x = 0 \\ \dfrac{\sqrt{x}}{\sqrt{16 + \sqrt{x}} - 4}, & x>0 \end{cases} \]
is continuous at \( x = 0 \), then \( a = \)
AP EAPCET - 2025
Mathematics
Limits and Exponential Functions
View Solution
Evaluate the integral:
\[ \int_0^1 x^{5/2} (1 - x)^{3/2} \, dx = \]
AP EAPCET - 2025
Mathematics
Limits and Exponential Functions
View Solution
Evaluate \[ \int_0^\pi \left( \sin^3 x \cos^3 x + \sin^4 x \cos^4 x + \sin^3 x \cos^3 x \right) dx = ? \]
AP EAPCET - 2025
Mathematics
Limits and Exponential Functions
View Solution
View More Questions
Questions Asked in AP ICET exam
BGH : FKL :: DFK : _____
AP ICET - 2024
Pattern Recognition
View Solution
BEHK : 25811 :: ADGJ : _____
AP ICET - 2024
Pattern Recognition
View Solution
256 : 127 :: 378 : ____
AP ICET - 2024
Pattern Recognition
View Solution
If 'ACID' = 1C3D, 'PAMPER' = P1MP2R, 'BOMBAY' = B4MB1Y, then 'UNIVERSITY' = ..................................?
AP ICET - 2024
Coding Decoding
View Solution
Find the odd thing from the following:
AP ICET - 2024
Odd one Out
View Solution
View More Questions