Step 1: Use the logarithmic forms of inverse hyperbolic functions.
\( \text{sech}^{-1}x = \log\left(\frac{1+\sqrt{1-x^2}}{x}\right) \) for \( 0<x \le 1 \).
Given \( \text{sech}^{-1}x = \log 2 \).
So, \( \log\left(\frac{1+\sqrt{1-x^2}}{x}\right) = \log 2 \).
\[ \frac{1+\sqrt{1-x^2}}{x} = 2 \]
\[ 1+\sqrt{1-x^2} = 2x \]
\[ \sqrt{1-x^2} = 2x-1 \]
Square both sides: \( 1-x^2 = (2x-1)^2 = 4x^2-4x+1 \).
\[ 0 = 5x^2-4x \]
\[ x(5x-4) = 0 \]
Since \( 0<x \le 1 \), we have \( x \ne 0 \).
So \( 5x-4=0 \implies x = \frac{4}{5} \).
Check condition for squaring: \( 2x-1 \ge 0 \implies 2(\frac{4}{5})-1 = \frac{8}{5}-1 = \frac{3}{5} \ge 0 \).
Valid.
So, \( x = \frac{4}{5} \).
Step 2: Use the logarithmic forms for \( \text{cosech}^{-1}y \).
\( \text{cosech}^{-1}y = \log\left(\frac{1}{y} + \frac{\sqrt{1+y^2}}{|y|}\right) \).
Or, \( \text{cosech}^{-1}y = \sinh^{-1}(\frac{1}{y}) = \log\left(\frac{1}{y} + \sqrt{\left(\frac{1}{y}\right)^2+1}\right) \).
Given \( \text{cosech}^{-1}y = -\log 3 = \log(3^{-1}) = \log(\frac{1}{3}) \).
So, \( \log\left(\frac{1}{y} + \sqrt{\frac{1}{y^2}+1}\right) = \log(\frac{1}{3}) \).
\[ \frac{1}{y} + \sqrt{\frac{1+y^2}{y^2}} = \frac{1}{3} \]
\[ \frac{1}{y} + \frac{\sqrt{1+y^2}}{|y|} = \frac{1}{3} \]
Since \( \text{cosech}^{-1}y = -\log 3<0 \), \( y \) must be negative.
(Because \( \text{cosech}^{-1}y \) has the same sign as \(y\)).
So \( |y| = -y \).
\[ \frac{1}{y} + \frac{\sqrt{1+y^2}}{-y} = \frac{1}{3} \]
\[ \frac{1-\sqrt{1+y^2}}{y} = \frac{1}{3} \]
\[ 3(1-\sqrt{1+y^2}) = y \]
\[ 3-y = 3\sqrt{1+y^2} \]
Square both sides: \( (3-y)^2 = 9(1+y^2) \).
\[ 9-6y+y^2 = 9+9y^2 \]
\[ 0 = 8y^2+6y \]
\[ 2y(4y+3) = 0 \]
Since \( y \ne 0 \), we have \( 4y+3=0 \implies y = -\frac{3}{4} \).
Check condition for squaring: \( 3-y \ge 0 \).
For \( y = -3/4 \), \( 3 - (-3/4) = 3+3/4 = 15/4 \ge 0 \).
Valid.
So, \( y = -\frac{3}{4} \).
Step 3: Calculate \( (x+y) \).
\[ x+y = \frac{4}{5} + \left(-\frac{3}{4}\right) = \frac{4}{5} - \frac{3}{4} \]
\[ = \frac{4 \cdot 4 - 3 \cdot 5}{5 \cdot 4} = \frac{16-15}{20} = \frac{1}{20} \]
This matches option (2).