If \( \text{sech}^{-1}x = \log 2 \) and \( \text{cosech}^{-1}y = -\log 3 \), then \( (x+y) = \)
Show Hint
Know the definitions or logarithmic forms of inverse hyperbolic functions:
\( \text{sech}^{-1}x = \cosh^{-1}(1/x) = \log(1/x + \sqrt{(1/x)^2-1}) = \log(\frac{1+\sqrt{1-x^2}}{x}) \) for \( 0<x \le 1 \).
\( \text{cosech}^{-1}y = \sinh^{-1}(1/y) = \log(1/y + \sqrt{(1/y)^2+1}) \).
Alternatively, if \( \text{sech}^{-1}x = A \), then \( x = \text{sech} A = \frac{1}{\cosh A} \). If \( A = \log 2 \), then \( \cosh A = \frac{e^A+e^{-A}}{2} = \frac{2+1/2}{2} = \frac{5/2}{2} = 5/4 \). So \( x = 4/5 \).
If \( \text{cosech}^{-1}y = B \), then \( y = \text{cosech} B = \frac{1}{\sinh B} \). If \( B = -\log 3 = \log(1/3) \), then \( \sinh B = \frac{e^B-e^{-B}}{2} = \frac{1/3-3}{2} = \frac{(1-9)/3}{2} = \frac{-8/3}{2} = -4/3 \). So \( y = 1/(-4/3) = -3/4 \).