If $\tan \theta = \tfrac{3}{4}$, then the value of $\cos \theta$ will be:
Step 1: Recall the definition of tangent
\[
\tan \theta = \frac{\text{Perpendicular}}{\text{Base}}
\]
Here, $\tan \theta = \tfrac{3}{4}$ means:
- Perpendicular (opposite side) = 3 units
- Base (adjacent side) = 4 units
Step 2: Use Pythagoras theorem to find the hypotenuse
\[
\text{Hypotenuse}^2 = \text{Perpendicular}^2 + \text{Base}^2
\]
\[
\text{Hypotenuse}^2 = 3^2 + 4^2 = 9 + 16 = 25
\]
\[
\text{Hypotenuse} = \sqrt{25} = 5
\]
Step 3: Write the formula for cosine
\[
\cos \theta = \frac{\text{Base}}{\text{Hypotenuse}} = \frac{4}{5}
\]
Step 4: Verify against options
The value of $\cos \theta$ is $\tfrac{4}{5}$, which matches option (A).
\[
\boxed{\cos \theta = \tfrac{4}{5}}
\]
$PQ$ is a chord of length $4\ \text{cm}$ of a circle of radius $2.5\ \text{cm}$. The tangents at $P$ and $Q$ intersect at a point $T$. Find the length of $TP$.