If $\tan \theta = \tfrac{3}{4}$, then the value of $\cos \theta$ will be:
Step 1: Recall the definition of tangent
\[
\tan \theta = \frac{\text{Perpendicular}}{\text{Base}}
\]
Here, $\tan \theta = \tfrac{3}{4}$ means:
- Perpendicular (opposite side) = 3 units
- Base (adjacent side) = 4 units
Step 2: Use Pythagoras theorem to find the hypotenuse
\[
\text{Hypotenuse}^2 = \text{Perpendicular}^2 + \text{Base}^2
\]
\[
\text{Hypotenuse}^2 = 3^2 + 4^2 = 9 + 16 = 25
\]
\[
\text{Hypotenuse} = \sqrt{25} = 5
\]
Step 3: Write the formula for cosine
\[
\cos \theta = \frac{\text{Base}}{\text{Hypotenuse}} = \frac{4}{5}
\]
Step 4: Verify against options
The value of $\cos \theta$ is $\tfrac{4}{5}$, which matches option (A).
\[
\boxed{\cos \theta = \tfrac{4}{5}}
\]
Find the unknown frequency if 24 is the median of the following frequency distribution:
\[\begin{array}{|c|c|c|c|c|c|} \hline \text{Class-interval} & 0-10 & 10-20 & 20-30 & 30-40 & 40-50 \\ \hline \text{Frequency} & 5 & 25 & 25 & \text{$p$} & 7 \\ \hline \end{array}\]
Two concentric circles are of radii $8\ \text{cm}$ and $5\ \text{cm}$. Find the length of the chord of the larger circle which touches (is tangent to) the smaller circle.