Concept: This problem can be solved by expressing \(\sin\theta\) and \(\cos\theta\) in terms of \(a\) and \(b\) using a right-angled triangle, or by dividing the numerator and denominator of the expression by \(\cos\theta\).
Method 1: Dividing by \(\cos\theta\)
Given expression: \( \frac{a\sin\theta + b\cos\theta}{a\sin\theta - b\cos\theta} \)
Divide both the numerator and the denominator by \(\cos\theta\) (assuming \(\cos\theta \neq 0\)):
Numerator: \( \frac{a\sin\theta + b\cos\theta}{\cos\theta} = a\frac{\sin\theta}{\cos\theta} + b\frac{\cos\theta}{\cos\theta} = a\tan\theta + b \)
Denominator: \( \frac{a\sin\theta - b\cos\theta}{\cos\theta} = a\frac{\sin\theta}{\cos\theta} - b\frac{\cos\theta}{\cos\theta} = a\tan\theta - b \)
So the expression becomes:
\[ \frac{a\tan\theta + b}{a\tan\theta - b} \]
We are given \( \tan\theta = \frac{a}{b} \). Substitute this into the expression:
\[ \frac{a\left(\frac{a}{b}\right) + b}{a\left(\frac{a}{b}\right) - b} = \frac{\frac{a^2}{b} + b}{\frac{a^2}{b} - b} \]
To simplify the complex fraction, find a common denominator (\(b\)) for the terms in the numerator and denominator:
Numerator: \( \frac{a^2}{b} + \frac{b^2}{b} = \frac{a^2+b^2}{b} \)
Denominator: \( \frac{a^2}{b} - \frac{b^2}{b} = \frac{a^2-b^2}{b} \)
So the expression is:
\[ \frac{\left(\frac{a^2+b^2}{b}\right)}{\left(\frac{a^2-b^2}{b}\right)} = \frac{a^2+b^2}{b} \times \frac{b}{a^2-b^2} = \frac{a^2+b^2}{a^2-b^2} \]
Method 2: Using a right-angled triangle
If \( \tan\theta = \frac{a}{b} \), we can consider a right-angled triangle where:
Opposite side = \(a\)
Adjacent side = \(b\)
Hypotenuse \(h = \sqrt{a^2+b^2}\)
Then, \(\sin\theta = \frac{\text{Opposite}}{\text{Hypotenuse}} = \frac{a}{\sqrt{a^2+b^2}}\)
And \(\cos\theta = \frac{\text{Adjacent}}{\text{Hypotenuse}} = \frac{b}{\sqrt{a^2+b^2}}\)
Substitute these into the expression \( \frac{a\sin\theta + b\cos\theta}{a\sin\theta - b\cos\theta} \):
Numerator: \( a\left(\frac{a}{\sqrt{a^2+b^2}}\right) + b\left(\frac{b}{\sqrt{a^2+b^2}}\right) = \frac{a^2}{\sqrt{a^2+b^2}} + \frac{b^2}{\sqrt{a^2+b^2}} = \frac{a^2+b^2}{\sqrt{a^2+b^2}} \)
Denominator: \( a\left(\frac{a}{\sqrt{a^2+b^2}}\right) - b\left(\frac{b}{\sqrt{a^2+b^2}}\right) = \frac{a^2}{\sqrt{a^2+b^2}} - \frac{b^2}{\sqrt{a^2+b^2}} = \frac{a^2-b^2}{\sqrt{a^2+b^2}} \)
The expression becomes:
\[ \frac{\left(\frac{a^2+b^2}{\sqrt{a^2+b^2}}\right)}{\left(\frac{a^2-b^2}{\sqrt{a^2+b^2}}\right)} = \frac{a^2+b^2}{a^2-b^2} \]
Both methods yield \( \frac{a^2+b^2}{a^2-b^2} \).