We are given:
\[
t_n = \dfrac{1}{n(n+2)}
\]
Using partial fractions:
\[
t_n = \dfrac{1}{n(n+2)} = \dfrac{1}{2} \left( \dfrac{1}{n} - \dfrac{1}{n+2} \right)
\]
Now, summing from \( n = 1 \) to \( 2003 \):
\[
\sum_{n=1}^{2003} t_n = \sum_{n=1}^{2003} \dfrac{1}{2} \left( \dfrac{1}{n} - \dfrac{1}{n+2} \right)
\]
Factor out \( \dfrac{1}{2} \):
\[
= \dfrac{1}{2} \sum_{n=1}^{2003} \left( \dfrac{1}{n} - \dfrac{1}{n+2} \right)
\]
This is a telescoping series. Write out a few terms to see the cancellation:
\[
= \dfrac{1}{2} \left( \left( \dfrac{1}{1} - \dfrac{1}{3} \right) + \left( \dfrac{1}{2} - \dfrac{1}{4} \right) + \left( \dfrac{1}{3} - \dfrac{1}{5} \right) + \cdots + \left( \dfrac{1}{2003} - \dfrac{1}{2005} \right) \right)
\]
On simplifying, most terms cancel. The remaining terms are:
\[
= \dfrac{1}{2} \left( \dfrac{1}{1} + \dfrac{1}{2} - \dfrac{1}{2004} - \dfrac{1}{2005} \right)
\]
\[
= \dfrac{1}{2} \left( \dfrac{3}{2} - \dfrac{1}{2004} - \dfrac{1}{2005} \right)
\]
Clearly, this is not equal to \( \dfrac{2003}{3005} \). Therefore, Assertion (A) is false.
But Reason (R) is a correct identity. So Reason is true.