We begin with the given sum:
\[
\sum_{r=0}^{10} \left( 10^{r+1} - 1 \right) \binom{10}{r}
\]
Now, expanding the terms:
\[
= \sum_{r=0}^{10} \left( 10^{r+1} - 10 \right) \binom{10}{r}
\]
This gives us two separate sums:
\[
\sum_{r=0}^{10} \left( 10^{r+1} \right) \binom{10}{r} - \sum_{r=0}^{10} 10 \binom{10}{r}
\]
Now, evaluating both parts separately:
\[
\sum_{r=0}^{10} 10^{r+1} \binom{10}{r} = 10 \sum_{r=0}^{10} 10^r \binom{10}{r}
\]
\[
\sum_{r=0}^{10} 10 \binom{10}{r} = 10 \left( \sum_{r=0}^{10} \binom{10}{r} \right)
\]
Using the binomial expansion for the sum of binomial coefficients:
\[
\sum_{r=0}^{10} \binom{10}{r} = 2^{10} = 1024
\]
Now, continuing:
\[
10 \sum_{r=0}^{10} 10^r \binom{10}{r} = 10^{11} - 1
\]
Finally, simplifying:
\[
10^{11} - 1 = \alpha^{11} - 1
\]
Hence, \( \alpha = 20 \).