If \[ \sum_{r=0}^{10} \left( \frac{10^{r+1} - 1}{10^r} \right) \cdot {^{11}C_{r+1}} = \frac{\alpha^{11} - 11^{11}}{10^{10}}, \] then \( \alpha \) is equal to:
We are asked to find the value of \( \alpha \) from the given equation:
\[ \sum_{r=0}^{10} \left( \frac{10^{r+1}-1}{10^r} \right) \cdot {}^{11}C_{r+1} = \frac{\alpha^{11} - 11^{11}}{10^{10}} \]
The solution uses the Binomial Theorem and its consequences. The key formulas are:
1. Binomial expansion of \( (1+x)^n \):
\[ (1+x)^n = \sum_{k=0}^{n} {}^{n}C_k x^k = {}^{n}C_0 + {}^{n}C_1 x + \dots + {}^{n}C_n x^n \]
2. Sum of binomial coefficients:
\[ \sum_{k=0}^{n} {}^{n}C_k = {}^{n}C_0 + {}^{n}C_1 + \dots + {}^{n}C_n = 2^n \]
From this, it follows that \( \sum_{k=1}^{n} {}^{n}C_k = 2^n - {}^{n}C_0 = 2^n - 1 \).
Step 1: Let the left-hand side (LHS) be denoted by S. First, simplify the term inside the parentheses in the summation.
\[ \frac{10^{r+1}-1}{10^r} = \frac{10^{r+1}}{10^r} - \frac{1}{10^r} = 10 - \frac{1}{10^r} \]
Step 2: Substitute this simplified term back into the summation and perform a change of index. Let \( k = r+1 \). As \( r \) goes from 0 to 10, \( k \) goes from 1 to 11. Also, \( r = k-1 \).
\[ S = \sum_{r=0}^{10} \left( 10 - \frac{1}{10^r} \right) {}^{11}C_{r+1} = \sum_{k=1}^{11} \left( 10 - \frac{1}{10^{k-1}} \right) {}^{11}C_k \]
Step 3: Split the summation into two parts.
\[ S = \sum_{k=1}^{11} 10 \cdot {}^{11}C_k - \sum_{k=1}^{11} \frac{1}{10^{k-1}} \cdot {}^{11}C_k \] \[ S = 10 \sum_{k=1}^{11} {}^{11}C_k - \sum_{k=1}^{11} \frac{10}{10^k} \cdot {}^{11}C_k \] \[ S = 10 \sum_{k=1}^{11} {}^{11}C_k - 10 \sum_{k=1}^{11} {}^{11}C_k \left(\frac{1}{10}\right)^k \]
Step 4: Evaluate the first summation using the sum of binomial coefficients identity.
\[ \sum_{k=1}^{11} {}^{11}C_k = {}^{11}C_1 + {}^{11}C_2 + \dots + {}^{11}C_{11} = (2^{11} - {}^{11}C_0) = 2^{11} - 1 \]
So, the first term is \( 10(2^{11} - 1) \).
Step 5: Evaluate the second summation using the binomial expansion of \( (1+x)^{11} \) with \( x = 1/10 \).
\[ \left(1 + \frac{1}{10}\right)^{11} = \sum_{k=0}^{11} {}^{11}C_k \left(\frac{1}{10}\right)^k = {}^{11}C_0 + \sum_{k=1}^{11} {}^{11}C_k \left(\frac{1}{10}\right)^k \] \[ \left(\frac{11}{10}\right)^{11} = 1 + \sum_{k=1}^{11} {}^{11}C_k \left(\frac{1}{10}\right)^k \] \[ \sum_{k=1}^{11} {}^{11}C_k \left(\frac{1}{10}\right)^k = \frac{11^{11}}{10^{11}} - 1 \]
So, the second term is \( 10 \left( \frac{11^{11}}{10^{11}} - 1 \right) = \frac{11^{11}}{10^{10}} - 10 \).
Step 6: Combine the results to find the value of S.
\[ S = 10(2^{11} - 1) - \left( \frac{11^{11}}{10^{10}} - 10 \right) \] \[ S = 10 \cdot 2^{11} - 10 - \frac{11^{11}}{10^{10}} + 10 = 10 \cdot 2^{11} - \frac{11^{11}}{10^{10}} \]
Now, we equate the calculated LHS with the given RHS.
\[ 10 \cdot 2^{11} - \frac{11^{11}}{10^{10}} = \frac{\alpha^{11} - 11^{11}}{10^{10}} \]
Rewrite the LHS with a common denominator of \( 10^{10} \).
\[ \frac{10^{10} \cdot (10 \cdot 2^{11}) - 11^{11}}{10^{10}} = \frac{\alpha^{11} - 11^{11}}{10^{10}} \] \[ \frac{10^{11} \cdot 2^{11} - 11^{11}}{10^{10}} = \frac{\alpha^{11} - 11^{11}}{10^{10}} \]
By comparing the numerators, we get:
\[ (10 \cdot 2)^{11} - 11^{11} = \alpha^{11} - 11^{11} \] \[ 20^{11} = \alpha^{11} \]
Therefore, the value of \( \alpha \) is 20.
The minimum value of $ n $ for which the number of integer terms in the binomial expansion $\left(7^{\frac{1}{3}} + 11^{\frac{1}{12}}\right)^n$ is 183, is
A solution of aluminium chloride is electrolyzed for 30 minutes using a current of 2A. The amount of the aluminium deposited at the cathode is _________
If \[ \int \frac{2x^2 + 5x + 9}{\sqrt{x^2 + x + 1}} \, dx = \sqrt{x^2 + x + 1} + \alpha \sqrt{x^2 + x + 1} + \beta \log_e \left( \left| x + \frac{1}{2} + \sqrt{x^2 + x + 1} \right| \right) + C, \] where \( C \) is the constant of integration, then \( \alpha + 2\beta \) is equal to ________________