We are given the equation:
\[
\sqrt{\frac{y}{x}} + 4\sqrt{\frac{x}{y}} = 4.
\]
Step 1: Square both sides to simplify the equation.
First, square both sides:
\[
\left(\sqrt{\frac{y}{x}} + 4\sqrt{\frac{x}{y}}\right)^2 = 4^2.
\]
Expanding the left-hand side:
\[
\frac{y}{x} + 16 \cdot \frac{x}{y} + 2 \cdot 4 \cdot \sqrt{\frac{y}{x} \cdot \frac{x}{y}} = 16.
\]
Simplify the expression:
\[
\frac{y}{x} + 16 \cdot \frac{x}{y} + 8 = 16.
\]
Rearrange the equation:
\[
\frac{y}{x} + 16 \cdot \frac{x}{y} = 8.
\]
Step 2: Eliminate fractions by multiplying through by \( xy \).
Multiply both sides by \( xy \) to clear the denominators:
\[
y^2 + 16x^2 = 8xy.
\]
Step 3: Differentiate both sides with respect to \( x \).
Now, differentiate both sides with respect to \( x \):
\[
\frac{d}{dx}(y^2) + \frac{d}{dx}(16x^2) = \frac{d}{dx}(8xy).
\]
Using the chain rule, we get:
\[
2y \frac{dy}{dx} + 32x = 8\left(y + x \frac{dy}{dx}\right).
\]
Simplifying the equation:
\[
2y \frac{dy}{dx} + 32x = 8y + 8x \frac{dy}{dx}.
\]
Rearranging terms to isolate \( \frac{dy}{dx} \):
\[
2y \frac{dy}{dx} - 8x \frac{dy}{dx} = 8y - 32x.
\]
Factoring out \( \frac{dy}{dx} \):
\[
(2y - 8x) \frac{dy}{dx} = 8y - 32x.
\]
Solving for \( \frac{dy}{dx} \):
\[
\frac{dy}{dx} = \frac{8y - 32x}{2y - 8x}.
\]
Step 4: Simplify the expression for \( \frac{dy}{dx} \).
Factor both the numerator and the denominator:
\[
\frac{dy}{dx} = \frac{8(y - 4x)}{2(y - 4x)}.
\]
Cancel the common factor \( (y - 4x) \):
\[
\frac{dy}{dx} = 4.
\]
Final Answer:
\[
\boxed{4}
\]