Given the equation \((\sqrt{3} - i)^n = 2^n\), we need to find the least possible value of \(n\).
First, express \(\sqrt{3} - i\) in polar form. Assume \(\sqrt{3} - i = r(\cos\theta + i\sin\theta)\).
The modulus \(r\) of \(\sqrt{3} - i\) is calculated as:
\[ r = \sqrt{(\sqrt{3})^2 + (-1)^2} = \sqrt{3 + 1} = \sqrt{4} = 2 \]
Now, calculate the argument \(\theta\):
\[ \tan\theta = \frac{-1}{\sqrt{3}} \Rightarrow \theta = -\frac{\pi}{6} \] (since \(\tan\) is negative in the fourth quadrant)
This gives us the polar form: \( \sqrt{3} - i = 2 \left( \cos\left(-\frac{\pi}{6}\right) + i\sin\left(-\frac{\pi}{6}\right) \right) \).
Substitute into the equation:
\((2(\cos(-\frac{\pi}{6}) + i\sin(-\frac{\pi}{6})))^n = 2^n\)
This implies:
\[ 2^n \left( \cos\left(-\frac{n\pi}{6}\right) + i\sin\left(-\frac{n\pi}{6}\right) \right) = 2^n \]
The magnitudes are equal, so equate the angles:
\[\cos\left(-\frac{n\pi}{6}\right) + i\sin\left(-\frac{n\pi}{6}\right) = 1 \]
For this to hold, \(\cos\left(-\frac{n\pi}{6}\right) = 1\) and \(\sin\left(-\frac{n\pi}{6}\right) = 0\).
The condition for cosine is satisfied when \(-\frac{n\pi}{6} = 2k\pi\), where \(k\) is an integer.
Solving for \(n\):
\[-\frac{n\pi}{6} = 2k\pi \Rightarrow n = -12k \]
The smallest positive \(n\) for integer \(k\) is when \(k = -1\), giving \(n = 12\).
Reassess to find any smaller \(n\) that satisfies the trigonometric condition without considering magnitude:
\(-\frac{n\pi}{6} = -2k\pi \Rightarrow n = 6k\)
The smallest positive \(n\) for integer \(k\) is \(n = 6\) when \(k = 1\).
Hence, the least possible value of \(n\) is 6.
Let \( z \) satisfy \( |z| = 1, \ z = 1 - \overline{z} \text{ and } \operatorname{Im}(z)>0 \)
Then consider:
Statement-I: \( z \) is a real number
Statement-II: Principal argument of \( z \) is \( \dfrac{\pi}{3} \)
Then:
If \( z \) and \( \omega \) are two non-zero complex numbers such that \( |z\omega| = 1 \) and
\[ \arg(z) - \arg(\omega) = \frac{\pi}{2}, \]
Then the value of \( \overline{z\omega} \) is:
If \( x^a y^b = e^m, \)
and
\[ x^c y^d = e^n, \]
and
\[ \Delta_1 = \begin{vmatrix} m & b \\ n & d \\ \end{vmatrix}, \quad \Delta_2 = \begin{vmatrix} a & m \\ c & n \\ \end{vmatrix}, \quad \Delta_3 = \begin{vmatrix} a & b \\ c & d \\ \end{vmatrix} \]
Then the values of \( x \) and \( y \) respectively (where \( e \) is the base of the natural logarithm) are:
\( z_1, z_2, z_3 \) represent the vertices A, B, C of a triangle ABC respectively in the Argand plane. If
\[ |z_1 - z_2| = \sqrt{25 - 12 \sqrt{3}}, \] \[ \left|\frac{z_1 - z_3}{z_2 - z_3}\right| = \frac{3}{4}, \] \[ \text{and } \angle ACB = 30^\circ, \]
Then the area (in sq. units) of that triangle is:
If \( \vec{u}, \vec{v}, \vec{w} \) are non-coplanar vectors and \( p, q \) are real numbers, then the equality:
\[ [3\vec{u} \quad p\vec{v} \quad p\vec{w}] - [p\vec{v} \quad \vec{w} \quad q\vec{u}] - [2\vec{w} \quad q\vec{v} \quad q\vec{u}] = 0 \]
holds for:
Statement-I: In the interval \( [0, 2\pi] \), the number of common solutions of the equations
\[ 2\sin^2\theta - \cos 2\theta = 0 \]
and
\[ 2\cos^2\theta - 3\sin\theta = 0 \]
is two.
Statement-II: The number of solutions of
\[ 2\cos^2\theta - 3\sin\theta = 0 \]
in \( [0, \pi] \) is two.
If \( A \) and \( B \) are acute angles satisfying
\[ 3\cos^2 A + 2\cos^2 B = 4 \]
and
\[ \frac{3 \sin A}{\sin B} = \frac{2 \cos B}{\cos A}, \]
Then \( A + 2B = \ ? \)
If
\[ \sin \theta + 2 \cos \theta = 1 \]
and
\[ \theta \text{ lies in the 4\textsuperscript{th} quadrant (not on coordinate axes), then } 7 \cos \theta + 6 \sin \theta =\ ? \]