Given the equation \((\sqrt{3} - i)^n = 2^n\), we need to find the least possible value of \(n\).
First, express \(\sqrt{3} - i\) in polar form. Assume \(\sqrt{3} - i = r(\cos\theta + i\sin\theta)\).
The modulus \(r\) of \(\sqrt{3} - i\) is calculated as:
\[ r = \sqrt{(\sqrt{3})^2 + (-1)^2} = \sqrt{3 + 1} = \sqrt{4} = 2 \]
Now, calculate the argument \(\theta\):
\[ \tan\theta = \frac{-1}{\sqrt{3}} \Rightarrow \theta = -\frac{\pi}{6} \] (since \(\tan\) is negative in the fourth quadrant)
This gives us the polar form: \( \sqrt{3} - i = 2 \left( \cos\left(-\frac{\pi}{6}\right) + i\sin\left(-\frac{\pi}{6}\right) \right) \).
Substitute into the equation:
\((2(\cos(-\frac{\pi}{6}) + i\sin(-\frac{\pi}{6})))^n = 2^n\)
This implies:
\[ 2^n \left( \cos\left(-\frac{n\pi}{6}\right) + i\sin\left(-\frac{n\pi}{6}\right) \right) = 2^n \]
The magnitudes are equal, so equate the angles:
\[\cos\left(-\frac{n\pi}{6}\right) + i\sin\left(-\frac{n\pi}{6}\right) = 1 \]
For this to hold, \(\cos\left(-\frac{n\pi}{6}\right) = 1\) and \(\sin\left(-\frac{n\pi}{6}\right) = 0\).
The condition for cosine is satisfied when \(-\frac{n\pi}{6} = 2k\pi\), where \(k\) is an integer.
Solving for \(n\):
\[-\frac{n\pi}{6} = 2k\pi \Rightarrow n = -12k \]
The smallest positive \(n\) for integer \(k\) is when \(k = -1\), giving \(n = 12\).
Reassess to find any smaller \(n\) that satisfies the trigonometric condition without considering magnitude:
\(-\frac{n\pi}{6} = -2k\pi \Rightarrow n = 6k\)
The smallest positive \(n\) for integer \(k\) is \(n = 6\) when \(k = 1\).
Hence, the least possible value of \(n\) is 6.
If \( z \) is a complex number and \( k \in \mathbb{R} \), such that \( |z| = 1 \), \[ \frac{2 + k^2 z}{k + \overline{z}} = kz, \] then the maximum distance from \( k + i k^2 \) to the circle \( |z - (1 + 2i)| = 1 \) is:
For a non-zero complex number $ z $, let $\arg(z)$ denote the principal argument of $ z $, with $-\pi < \arg(z) \leq \pi$. Let $\omega$ be the cube root of unity for which $0 < \arg(\omega) < \pi$. Let $$ \alpha = \arg \left( \sum_{n=1}^{2025} (-\omega)^n \right). $$ Then the value of $\frac{3 \alpha}{\pi}$ is _____.