Let $x = \sin \theta$ and $y = \csc \theta$.
We are given that $x^2 + y^2 = \sin^2 \theta + \csc^2 \theta = 6$.
We want to find the value of $x+y = \sin \theta + \csc \theta$.
We know that $\csc \theta = \frac{1}{\sin \theta}$, so $y = \frac{1}{x}$. Thus, $x^2 + \frac{1}{x^2} = 6$.
Let $S = \sin \theta + \csc \theta = x + \frac{1}{x}$.
We know that $$ \left(\sin \theta + \csc \theta\right)^2 = (\sin \theta)^2 + 2(\sin \theta)(\csc \theta) + (\csc \theta)^2 = \sin^2 \theta + 2(\sin \theta)(\frac{1}{\sin \theta}) + \csc^2 \theta $$ So, $$ S^2 = \sin^2 \theta + 2 + \csc^2 \theta = \sin^2 \theta + \csc^2 \theta + 2 = 6 + 2 = 8 $$ Taking the square root of both sides, we have $$ S = \pm \sqrt{8} = \pm 2\sqrt{2} $$
Since $\csc \theta = \frac{1}{\sin \theta}$, they have the same sign.
The positive solution is: $$ \sin \theta + \csc \theta = 2\sqrt{2} $$
The value of \(\dfrac{\sqrt{3}\cosec 20^\circ - \sec 20^\circ}{\cos 20^\circ \cos 40^\circ \cos 60^\circ \cos 80^\circ}\) is equal to
If $\cot x=\dfrac{5}{12}$ for some $x\in(\pi,\tfrac{3\pi}{2})$, then \[ \sin 7x\left(\cos \frac{13x}{2}+\sin \frac{13x}{2}\right) +\cos 7x\left(\cos \frac{13x}{2}-\sin \frac{13x}{2}\right) \] is equal to
If \[ \frac{\cos^2 48^\circ - \sin^2 12^\circ}{\sin^2 24^\circ - \sin^2 6^\circ} = \frac{\alpha + \beta\sqrt{5}}{2}, \] where \( \alpha, \beta \in \mathbb{N} \), then the value of \( \alpha + \beta \) is ___________.