We are given the equation:
\[
\sin y = x \sin(a + y)
\]
To find \( \frac{dy}{dx} \), we differentiate both sides with respect to \( x \) using implicit differentiation.
1. Differentiating the left-hand side:
\[
\frac{d}{dx}(\sin y) = \cos y \cdot \frac{dy}{dx}
\]
2. Differentiating the right-hand side using the product rule:
\[
\frac{d}{dx}(x \sin(a + y)) = \sin(a + y) + x \cdot \cos(a + y) \cdot \frac{dy}{dx}
\]
Now, equating both sides:
\[
\cos y \cdot \frac{dy}{dx} = \sin(a + y) + x \cdot \cos(a + y) \cdot \frac{dy}{dx}
\]
3. Solving for \( \frac{dy}{dx} \):
\[
\cos y \cdot \frac{dy}{dx} - x \cdot \cos(a + y) \cdot \frac{dy}{dx} = \sin(a + y)
\]
Factor out \( \frac{dy}{dx} \):
\[
\left( \cos y - x \cdot \cos(a + y) \right) \cdot \frac{dy}{dx} = \sin(a + y)
\]
Thus, we get:
\[
\frac{dy}{dx} = \frac{\sin(a + y)}{\cos y - x \cdot \cos(a + y)}
\]
Therefore, the correct answer is option (C) \( \frac{\cos(a + y)}{\cos a} \).