We are given two equations:
1) $\sin x - \sin y = \frac{27}{65}$
2) $\cos x - \cos y = -\frac{21}{65}$
We use the sum-to-product trigonometric identities:
$\sin A - \sin B = 2\cos\left(\frac{A+B}{2}\right)\sin\left(\frac{A-B}{2}\right)$
$\cos A - \cos B = -2\sin\left(\frac{A+B}{2}\right)\sin\left(\frac{A-B}{2}\right)$
Applying these identities to the given equations:
1) $2\cos\left(\frac{x+y}{2}\right)\sin\left(\frac{x-y}{2}\right) = \frac{27}{65}$ (Equation P)
2) $-2\sin\left(\frac{x+y}{2}\right)\sin\left(\frac{x-y}{2}\right) = -\frac{21}{65}$ (Equation Q)
To eliminate $\sin\left(\frac{x-y}{2}\right)$, we divide Equation P by Equation Q.
Assuming $\sin\left(\frac{x-y}{2}\right) \neq 0$ (if it were zero, then $\frac{27}{65}=0$ and $-\frac{21}{65}=0$, which is a contradiction):
$\frac{2\cos\left(\frac{x+y}{2}\right)\sin\left(\frac{x-y}{2}\right)}{-2\sin\left(\frac{x+y}{2}\right)\sin\left(\frac{x-y}{2}\right)} = \frac{27/65}{-21/65}$
$-\frac{\cos\left(\frac{x+y}{2}\right)}{\sin\left(\frac{x+y}{2}\right)} = -\frac{27}{21}$
$-\cot\left(\frac{x+y}{2}\right) = -\frac{9}{7}$
$\cot\left(\frac{x+y}{2}\right) = \frac{9}{7}$
From $\cot\left(\frac{x+y}{2}\right) = \frac{9}{7}$, we can find $\sin\left(\frac{x+y}{2}\right)$ and $\cos\left(\frac{x+y}{2}\right)$.
Consider a right triangle where the adjacent side is 9 and the opposite side is 7. The hypotenuse is $\sqrt{9^2 + 7^2} = \sqrt{81+49} = \sqrt{130}$.
Since $\cot\left(\frac{x+y}{2}\right)>0$, $\frac{x+y}{2}$ must be in Quadrant I or Quadrant III.
If $\frac{x+y}{2}$ is in Quadrant I:
$\sin\left(\frac{x+y}{2}\right) = \frac{7}{\sqrt{130}}$
$\cos\left(\frac{x+y}{2}\right) = \frac{9}{\sqrt{130}}$
If $\frac{x+y}{2}$ is in Quadrant III:
$\sin\left(\frac{x+y}{2}\right) = -\frac{7}{\sqrt{130}}$
$\cos\left(\frac{x+y}{2}\right) = -\frac{9}{\sqrt{130}}$
We need to find $\sin(x+y)$. We use the double angle identity $\sin(2\theta) = 2\sin\theta\cos\theta$.
Let $\theta = \frac{x+y}{2}$.
$\sin(x+y) = 2\sin\left(\frac{x+y}{2}\right)\cos\left(\frac{x+y}{2}\right)$
Case 1: $\frac{x+y}{2}$ in Quadrant I
$\sin(x+y) = 2 \left(\frac{7}{\sqrt{130}}\right) \left(\frac{9}{\sqrt{130}}\right) = 2 \times \frac{63}{130} = \frac{126}{130} = \frac{63}{65}$.
Case 2: $\frac{x+y}{2}$ in Quadrant III
$\sin(x+y) = 2 \left(-\frac{7}{\sqrt{130}}\right) \left(-\frac{9}{\sqrt{130}}\right) = 2 \times \frac{63}{130} = \frac{126}{130} = \frac{63}{65}$.
In both cases, the value of $\sin(x+y)$ is $\frac{63}{65}$.
The final answer is $\boxed{\frac{63}{65}}$.