We are given the following equations: \[ \sin x + \sin y = \alpha, \quad \cos x + \cos y = \beta. \] We need to find the value of \( \csc(x + y) \).
Step 1: We will use the sum-to-product identities to express \( \sin x + \sin y \) and \( \cos x + \cos y \) in a different form. The sum-to-product identities are: \[ \sin x + \sin y = 2 \sin \left( \frac{x + y}{2} \right) \cos \left( \frac{x - y}{2} \right), \] \[ \cos x + \cos y = 2 \cos \left( \frac{x + y}{2} \right) \cos \left( \frac{x - y}{2} \right). \] Substitute the given values \( \sin x + \sin y = \alpha \) and \( \cos x + \cos y = \beta \): \[ \alpha = 2 \sin \left( \frac{x + y}{2} \right) \cos \left( \frac{x - y}{2} \right), \] \[ \beta = 2 \cos \left( \frac{x + y}{2} \right) \cos \left( \frac{x - y}{2} \right). \]
Step 2: Divide the equation for \( \alpha \) by the equation for \( \beta \): \[ \frac{\alpha}{\beta} = \frac{2 \sin \left( \frac{x + y}{2} \right) \cos \left( \frac{x - y}{2} \right)}{2 \cos \left( \frac{x + y}{2} \right) \cos \left( \frac{x - y}{2} \right)}. \] Simplifying this: \[ \frac{\alpha}{\beta} = \tan \left( \frac{x + y}{2} \right). \]
Step 3: We know that: \[ \csc(x + y) = \frac{1}{\sin(x + y)}. \] We can express \( \sin(x + y) \) as: \[ \sin(x + y) = 2 \sin \left( \frac{x + y}{2} \right) \cos \left( \frac{x + y}{2} \right). \] From the previous step, we have \( \tan \left( \frac{x + y}{2} \right) = \frac{\alpha}{\beta} \), so: \[ \sin \left( \frac{x + y}{2} \right) = \frac{\alpha}{2 \cos \left( \frac{x + y}{2} \right)}. \] Using the identity \( \sin^2 \theta + \cos^2 \theta = 1 \), we get: \[ \sin^2 \left( \frac{x + y}{2} \right) = \frac{\alpha^2}{4 \beta^2}, \] \[ \cos^2 \left( \frac{x + y}{2} \right) = \frac{\beta^2}{4 \beta^2}. \]
Step 4: Now, substituting the values into the equation for \( \csc(x + y) \), we get: \[ \csc(x + y) = \frac{\beta^2 + \alpha^2}{2 \alpha \beta}. \] Thus, the correct answer is \( \frac{\beta^2 + \alpha^2}{2 \alpha \beta} \).
Arrange the following in increasing order of their pK\(_b\) values.
What is Z in the following set of reactions?
Acetophenone can be prepared from which of the following reactants?
What are \(X\) and \(Y\) in the following reactions?
What are \(X\) and \(Y\) respectively in the following reaction?