Step 1: Assume the solution is of the form \( y = e^{mx} \) and substitute into the equation:
\[
m^4 + 2m^3 + 6m^2 + 2m + 5 = 0
\]
Use substitution or trial to factor this quartic. It factors into complex roots:
\[
m = \pm i, \quad m = -1 \pm 2i
\]
Step 2: General solution using roots:
- \( m = i ⇒ \sin x, \cos x \)
- \( m = -1 \pm 2i ⇒ e^{-x} \sin 2x, e^{-x} \cos 2x \)
So, the general solution is:
\[
y = C_1 \sin x + C_2 \cos x + e^{-x}(C_3 \sin 2x + C_4 \cos 2x)
\]
Final Answer: \( \boxed{y = C_1 \sin x + C_2 \cos x + e^{-x}(C_3 \sin 2x + C_4 \cos 2x)} \)