We are given \(\sin \theta = \frac{1}{3}\). We need to find \(\sec \theta\).
Recall the following trigonometric identities: \(\sec \theta = \frac{1}{\cos \theta}\)
\[ \sin^2 \theta + \cos^2 \theta = 1 \]
From \(\sin \theta = \frac{1}{3}\), we can find \(\cos \theta\) using the identity \(\sin^2 \theta + \cos^2 \theta = 1\):
\[ \left(\frac{1}{3}\right)^2 + \cos^2 \theta = 1 \implies \frac{1}{9} + \cos^2 \theta = 1 \]
\[ \cos^2 \theta = 1 - \frac{1}{9} = \frac{8}{9} \]
Thus:
\[ \cos \theta = \frac{\sqrt{8}}{3} \]
Now, we can find \(\sec \theta\):
\[ \sec \theta = \frac{1}{\cos \theta} = \frac{1}{\frac{\sqrt{8}}{3}} = \frac{3}{\sqrt{8}} = \frac{3}{2\sqrt{2}} \]
Thus, the correct answer is:
\(b)\ \frac{3}{2\sqrt{2}}\)