90
\[ \sin \theta + \cos \theta = \sqrt{2} \] Rewrite:
\[ \sqrt{2} \left( \frac{\sin \theta}{\sqrt{2}} + \frac{\cos \theta}{\sqrt{2}} \right) = \sqrt{2} \Rightarrow \sqrt{2} \left( \sin \theta \cdot \frac{1}{\sqrt{2}} + \cos \theta \cdot \frac{1}{\sqrt{2}} \right) = \sqrt{2} \] \[ \sin \theta \cos 45^\circ + \cos \theta \sin 45^\circ = 1 \Rightarrow \sin(\theta + 45^\circ) = 1 \] \[ \theta + 45^\circ = 90^\circ \Rightarrow \theta = 45^\circ \] Thus, the answer is 45.
For any natural number $k$, let $a_k = 3^k$. The smallest natural number $m$ for which \[ (a_1)^1 \times (a_2)^2 \times \dots \times (a_{20})^{20} \;<\; a_{21} \times a_{22} \times \dots \times a_{20+m} \] is: