Question:

If \( \sin \theta + \cos \theta = \sqrt{2} \), then what is the value of \( \theta \) (in degrees)?

Show Hint

Use trigonometric identities to simplify equations involving sine and cosine sums.
Updated On: Jul 24, 2025
  • 30
  • 45
  • 60
  • 90 
     

Hide Solution
collegedunia
Verified By Collegedunia

The Correct Option is B

Solution and Explanation

\[ \sin \theta + \cos \theta = \sqrt{2} \] Rewrite: 
\[ \sqrt{2} \left( \frac{\sin \theta}{\sqrt{2}} + \frac{\cos \theta}{\sqrt{2}} \right) = \sqrt{2} \Rightarrow \sqrt{2} \left( \sin \theta \cdot \frac{1}{\sqrt{2}} + \cos \theta \cdot \frac{1}{\sqrt{2}} \right) = \sqrt{2} \] \[ \sin \theta \cos 45^\circ + \cos \theta \sin 45^\circ = 1 \Rightarrow \sin(\theta + 45^\circ) = 1 \] \[ \theta + 45^\circ = 90^\circ \Rightarrow \theta = 45^\circ \] Thus, the answer is 45
 

Was this answer helpful?
0
0

Questions Asked in CAT exam

View More Questions

CAT Notification