Concept: For a quadratic equation \( Ax^2+Bx+C=0 \), if the roots are \(r_1\) and \(r_2\), then:
Sum of roots: \(r_1 + r_2 = -B/A\)
Product of roots: \(r_1 r_2 = C/A\)
We also use the fundamental trigonometric identity: \(\sin^2\alpha + \cos^2\alpha = 1\).
Step 1: Apply Vieta's formulas to the given equation
The given equation is \( ax^2+bx+c=0 \).
The roots are given as \( \sin\alpha \) and \( \cos\alpha \).
Comparing with \(Ax^2+Bx+C=0\), we have \(A=a, B=b, C=c\).
Sum of roots:
\[ \sin\alpha + \cos\alpha = -\frac{b}{a} \quad \cdots (1) \]
Product of roots:
\[ \sin\alpha \cos\alpha = \frac{c}{a} \quad \cdots (2) \]
Step 2: Use the identity \((x+y)^2 = x^2 + y^2 + 2xy\)
We want to find an expression involving \(b^2\). Notice that \(b\) appears in the sum of roots.
Let's square the equation (1):
\[ (\sin\alpha + \cos\alpha)^2 = \left(-\frac{b}{a}\right)^2 \]
Expand the left side:
\[ \sin^2\alpha + \cos^2\alpha + 2\sin\alpha\cos\alpha = \frac{b^2}{a^2} \]
Step 3: Substitute known identities and expressions
We know the trigonometric identity: \( \sin^2\alpha + \cos^2\alpha = 1 \).
From equation (2), we know: \( \sin\alpha\cos\alpha = \frac{c}{a} \).
Substitute these into the expanded equation from Step 2:
\[ 1 + 2\left(\frac{c}{a}\right) = \frac{b^2}{a^2} \]
Step 4: Solve for \(b^2\)
\[ 1 + \frac{2c}{a} = \frac{b^2}{a^2} \]
To clear the denominators, multiply the entire equation by \(a^2\):
\[ a^2\left(1 + \frac{2c}{a}\right) = a^2\left(\frac{b^2}{a^2}\right) \]
\[ a^2(1) + a^2\left(\frac{2c}{a}\right) = b^2 \]
\[ a^2 + 2ac = b^2 \]
So, \( b^2 = a^2 + 2ac \).