We know:
\[\tan A = \frac{\sin A}{\cos A}, \quad \tan B = \frac{\sin B}{\cos B}.\]
Step 1: Find $\cos A$ Using the Pythagorean identity:
\[\sin^2 A + \cos^2 A = 1 \implies \cos^2 A = 1 - \sin^2 A = 1 - \left(\frac{3}{5}\right)^2 = \frac{16}{25}.\]
\[\cos A = \frac{4}{5}.\]
Step 2: Find $\sin B$ Using the Pythagorean identity:
\[\sin^2 B + \cos^2 B = 1 \implies \sin^2 B = 1 - \cos^2 B = 1 - \left(\frac{12}{13}\right)^2 = \frac{25}{169}.\]
\[\sin B = \frac{5}{13}.\]
Step 3: Calculate $\tan A$ and $\tan B$
\[\tan A = \frac{\sin A}{\cos A} = \frac{\frac{3}{5}}{\frac{4}{5}} = \frac{3}{4}, \quad \tan B = \frac{\sin B}{\cos B} = \frac{\frac{5}{13}}{\frac{12}{13}} = \frac{5}{12}.\]
Step 4: Find $(\tan A + \tan B)$
\[\tan A + \tan B = \frac{3}{4} + \frac{5}{12}.\]
Taking the LCM of 4 and 12:
\[\tan A + \tan B = \frac{9}{12} + \frac{5}{12} = \frac{14}{12} = \frac{7}{6}.\]
Correct Answer: $\frac{7}{6}$.
The value of \(\dfrac{\sqrt{3}\cosec 20^\circ - \sec 20^\circ}{\cos 20^\circ \cos 40^\circ \cos 60^\circ \cos 80^\circ}\) is equal to
If $\cot x=\dfrac{5}{12}$ for some $x\in(\pi,\tfrac{3\pi}{2})$, then \[ \sin 7x\left(\cos \frac{13x}{2}+\sin \frac{13x}{2}\right) +\cos 7x\left(\cos \frac{13x}{2}-\sin \frac{13x}{2}\right) \] is equal to
If \[ \frac{\cos^2 48^\circ - \sin^2 12^\circ}{\sin^2 24^\circ - \sin^2 6^\circ} = \frac{\alpha + \beta\sqrt{5}}{2}, \] where \( \alpha, \beta \in \mathbb{N} \), then the value of \( \alpha + \beta \) is ___________.

परंपरागत भोजन को लोकप्रिय कैसे बनाया जा सकता है ?
i. उपलब्ध करवाकर
ii. प्रचार-प्रसार द्वारा
iii. बिक्री की विशेष व्यवस्था करके
iv. घर-घर मुफ्त अभियान चलाकर विकल्प: