We know:
\[\tan A = \frac{\sin A}{\cos A}, \quad \tan B = \frac{\sin B}{\cos B}.\]
Step 1: Find $\cos A$ Using the Pythagorean identity:
\[\sin^2 A + \cos^2 A = 1 \implies \cos^2 A = 1 - \sin^2 A = 1 - \left(\frac{3}{5}\right)^2 = \frac{16}{25}.\]
\[\cos A = \frac{4}{5}.\]
Step 2: Find $\sin B$ Using the Pythagorean identity:
\[\sin^2 B + \cos^2 B = 1 \implies \sin^2 B = 1 - \cos^2 B = 1 - \left(\frac{12}{13}\right)^2 = \frac{25}{169}.\]
\[\sin B = \frac{5}{13}.\]
Step 3: Calculate $\tan A$ and $\tan B$
\[\tan A = \frac{\sin A}{\cos A} = \frac{\frac{3}{5}}{\frac{4}{5}} = \frac{3}{4}, \quad \tan B = \frac{\sin B}{\cos B} = \frac{\frac{5}{13}}{\frac{12}{13}} = \frac{5}{12}.\]
Step 4: Find $(\tan A + \tan B)$
\[\tan A + \tan B = \frac{3}{4} + \frac{5}{12}.\]
Taking the LCM of 4 and 12:
\[\tan A + \tan B = \frac{9}{12} + \frac{5}{12} = \frac{14}{12} = \frac{7}{6}.\]
Correct Answer: $\frac{7}{6}$.
In the adjoining figure, \( AP = 1 \, \text{cm}, \ BP = 2 \, \text{cm}, \ AQ = 1.5 \, \text{cm}, \ AC = 4.5 \, \text{cm} \) Prove that \( \triangle APQ \sim \triangle ABC \).
Hence, find the length of \( PQ \), if \( BC = 3.6 \, \text{cm} \).
In the adjoining figure, $\triangle CAB$ is a right triangle, right angled at A and $AD \perp BC$. Prove that $\triangle ADB \sim \triangle CDA$. Further, if $BC = 10$ cm and $CD = 2$ cm, find the length of AD.