Concept: This problem uses the complementary angle identity for sine and cosine, which states that \(\cos \phi = \sin(90^\circ - \phi)\) or \(\sin \phi = \cos(90^\circ - \phi)\).
Step 1: Use the complementary angle identity to express \(\cos 40^\circ\) in terms of sine
We know that \(\cos \phi = \sin(90^\circ - \phi)\).
Let \(\phi = 40^\circ\).
So, \(\cos 40^\circ = \sin(90^\circ - 40^\circ) = \sin 50^\circ\).
Step 2: Substitute this into the given equation
The given equation is \(\sin(30^\circ + \theta) = \cos 40^\circ\).
Substituting \(\cos 40^\circ = \sin 50^\circ\), we get:
\[ \sin(30^\circ + \theta) = \sin 50^\circ \]
Step 3: Solve for \(\theta\)
If \(\sin A = \sin B\), then one possible solution (for acute angles, which is usually the context here unless specified) is \(A = B\).
So, we can equate the angles:
\[ 30^\circ + \theta = 50^\circ \]
Subtract \(30^\circ\) from both sides:
\[ \theta = 50^\circ - 30^\circ \]
\[ \theta = 20^\circ \]
Alternative approach using \(\sin \phi = \cos(90^\circ - \phi)\)
Alternatively, we could convert \(\sin(30^\circ + \theta)\) to cosine form:
\(\sin(30^\circ + \theta) = \cos(90^\circ - (30^\circ + \theta)) = \cos(90^\circ - 30^\circ - \theta) = \cos(60^\circ - \theta)\).
So the equation becomes:
\(\cos(60^\circ - \theta) = \cos 40^\circ\).
Equating the angles:
\(60^\circ - \theta = 40^\circ\)
\(60^\circ - 40^\circ = \theta\)
\(\theta = 20^\circ\).
The value of \(\theta\) is \(20^\circ\). This matches option (3).