Concept: This problem uses the complementary angle identity for sine and cosine:
\(\sin x = \cos(90^\circ - x)\) or \(\cos y = \sin(90^\circ - y)\).
If \(\sin A = \cos B\), and A and B are acute angles, then \(A + B = 90^\circ\).
Step 1: Apply the complementary angle relationship
We are given \( \sin 3\theta = \cos(\theta - 6^\circ) \).
Since \(3\theta\) and \((\theta - 6^\circ)\) are acute angles, we can use the property that if \(\sin A = \cos B\), then \(A + B = 90^\circ\).
Let \(A = 3\theta\) and \(B = \theta - 6^\circ\).
So, \[ A + B = 90^\circ \]
\[ 3\theta + (\theta - 6^\circ) = 90^\circ \]
Step 2: Solve for \(\theta\)
\[ 3\theta + \theta - 6^\circ = 90^\circ \]
\[ 4\theta - 6^\circ = 90^\circ \]
Add \(6^\circ\) to both sides:
\[ 4\theta = 90^\circ + 6^\circ \]
\[ 4\theta = 96^\circ \]
Divide by 4:
\[ \theta = \frac{96^\circ}{4} \]
\[ \theta = 24^\circ \]
Step 3: Verify that the angles are acute
If \(\theta = 24^\circ\):
\(3\theta = 3 \times 24^\circ = 72^\circ\). This is an acute angle (between \(0^\circ\) and \(90^\circ\)).
\(\theta - 6^\circ = 24^\circ - 6^\circ = 18^\circ\). This is also an acute angle.
The conditions are satisfied.
Therefore, the value of \(\theta\) is \(24^\circ\).