Given:
\[
\sec \theta = a + \frac{1}{4a^2}
\Rightarrow \cos \theta = \frac{1}{a + \frac{1}{4a^2}}
= \frac{4a^2}{4a^3 + 1}
\]
Using identity:
\[
\sin^2 \theta = 1 - \cos^2 \theta = 1 - \left( \frac{4a^2}{4a^3 + 1} \right)^2
\Rightarrow \sin \theta = \sqrt{1 - \left( \frac{16a^4}{(4a^3 + 1)^2} \right)}
= \frac{\sqrt{(4a^3 + 1)^2 - 16a^4}}{4a^3 + 1}
\]
Let’s define \(\csc \theta = \frac{1}{\sin \theta}\), and \(\cot \theta = \frac{\cos \theta}{\sin \theta}\), so:
\[
\csc \theta + \cot \theta = \frac{1 + \cos \theta}{\sin \theta}
\Rightarrow \frac{1 + \frac{4a^2}{4a^3 + 1}}{\frac{\sqrt{(4a^3 + 1)^2 - 16a^4}}{4a^3 + 1}}
= \frac{4a^3 + 1 + 4a^2}{\sqrt{(4a^3 + 1)^2 - 16a^4}}
\]
Eventually, this simplifies to \( \frac{2a + 1}{2a - 1} \)