We are given that \( \sec \theta = a + \frac{1}{4a} \). Our goal is to find \( \csc \theta + \cot \theta \).
### Step 1: Use the identity \( \sec^2 \theta - \tan^2 \theta = 1 \).
We start with the identity:
\[
\sec^2 \theta - \tan^2 \theta = 1
\]
Using the given equation for \( \sec \theta \):
\[
\sec \theta = a + \frac{1}{4a}
\]
Square both sides:
\[
\sec^2 \theta = \left( a + \frac{1}{4a} \right)^2
\]
\[
= a^2 + 2 \cdot a \cdot \frac{1}{4a} + \left( \frac{1}{4a} \right)^2
\]
\[
= a^2 + \frac{1}{2} + \frac{1}{16a^2}
\]
Thus, \( \sec^2 \theta = a^2 + \frac{1}{2} + \frac{1}{16a^2} \).
### Step 2: Use the identity for \( \csc^2 \theta \).
Next, use the identity \( \csc^2 \theta = 1 + \cot^2 \theta \), and write \( \csc \theta \) and \( \cot \theta \) in terms of \( \sec \theta \).
After simplifying the equations, we find:
\[
\csc \theta + \cot \theta = \frac{2a + 1}{2a - 1}
\]
Thus, the correct answer is \( \frac{2a + 1}{2a - 1} \).