We are given that $\sec \theta + \tan \theta = k$.
We want to find the value of $\sec \theta - \tan \theta$.
We know the trigonometric identity: $$ \sec^2 \theta - \tan^2 \theta = 1 $$
We can factor the left side as a difference of squares: $$ (\sec \theta + \tan \theta) (\sec \theta - \tan \theta) = 1 $$ We are given that $\sec \theta + \tan \theta = k$. Substituting this into the equation, we get: $$ k (\sec \theta - \tan \theta) = 1 $$ Dividing both sides by $k$, we have: $$ \sec \theta - \tan \theta = \frac{1}{k} $$
The value of \(\dfrac{\sqrt{3}\cosec 20^\circ - \sec 20^\circ}{\cos 20^\circ \cos 40^\circ \cos 60^\circ \cos 80^\circ}\) is equal to
If $\cot x=\dfrac{5}{12}$ for some $x\in(\pi,\tfrac{3\pi}{2})$, then \[ \sin 7x\left(\cos \frac{13x}{2}+\sin \frac{13x}{2}\right) +\cos 7x\left(\cos \frac{13x}{2}-\sin \frac{13x}{2}\right) \] is equal to
If \[ \frac{\cos^2 48^\circ - \sin^2 12^\circ}{\sin^2 24^\circ - \sin^2 6^\circ} = \frac{\alpha + \beta\sqrt{5}}{2}, \] where \( \alpha, \beta \in \mathbb{N} \), then the value of \( \alpha + \beta \) is ___________.