We are given the matrix equation \( S \) and \( A \), and we are asked to find \( SAS^{-1} \).
Step 1: Write out the matrices for \( S \) and \( A \).
\[
S = \begin{bmatrix} 0 & 1 \\ 0 & 1 \\ 1 & 0 \end{bmatrix}
\]
\[
A = \frac{1}{2} \begin{bmatrix} b + c & c - a \\ a + b & b - c \end{bmatrix}
\]
Step 2: Calculate \( SAS^{-1} \).
The inverse of \( S \), denoted \( S^{-1} \), can be calculated. In this case, \( S^{-1} \) is:
\[
S^{-1} = \begin{bmatrix} 0 & 1 \\ 0 & 1 \\ 1 & 0 \end{bmatrix}
\]
Multiplying the matrices \( SAS^{-1} \), we get:
\[
SAS^{-1} = \begin{bmatrix} a & 0 & 0 \\ 0 & b & 0 \\ 0 & 0 & c \end{bmatrix}
\]
Thus, the correct answer is option (1).