If Q(0, 1) is equidistant from P(5, –3) and R(x, 6), find the values of x. Also find the distances QR and PR.
PR = QR
\(\sqrt{(5-0)^2+(-3-1)^2}=\sqrt{(0-x)^2+(1-6)^2}\)
\(\sqrt{(5)^2+(-4)^2}=\sqrt{(-x)^2+(-5)^2}\)
\(\sqrt{25+16}=\sqrt{x^2+25}\)
41=\(x^2+25\)
\(x^2=16\)
\(x=\pm 4\)
Therefore, point R is (4,6) or (-4,6)
When point R is (4,6)
PR= \(\sqrt{(5-4)^2+(-3-6)^2}=\sqrt{(1)^2+(-9)^2}=\sqrt{1+81}=\sqrt{82}\)
QR= \(\sqrt{(0-4))^2+(1-6)^2}=\sqrt{(4)^2+(-5)^2}=\sqrt{16+25}=\sqrt{41}\)
When point R is (-4,6)
PR= \(\sqrt{(5-(-4))^2+(-3-6)^2}=\sqrt{(9)^2+(-9)^2}=\sqrt{81+81}=\sqrt{162}\)
QR= \(\sqrt{(0-(-4))^2+(1-6)^2}=\sqrt{(4)^2+(-5)^2}=\sqrt{16+25}=\sqrt{41}\)
Let \( F \) and \( F' \) be the foci of the ellipse \( \frac{x^2}{a^2} + \frac{y^2}{b^2} = 1 \) (where \( b<2 \)), and let \( B \) be one end of the minor axis. If the area of the triangle \( FBF' \) is \( \sqrt{3} \) sq. units, then the eccentricity of the ellipse is:
A common tangent to the circle \( x^2 + y^2 = 9 \) and the parabola \( y^2 = 8x \) is
If the equation of the circle passing through the points of intersection of the circles \[ x^2 - 2x + y^2 - 4y - 4 = 0, \quad x^2 + y^2 + 4y - 4 = 0 \] and the point \( (3,3) \) is given by \[ x^2 + y^2 + \alpha x + \beta y + \gamma = 0, \] then \( 3(\alpha + \beta + \gamma) \) is: