We are given the equation:
\[
\cos \left( \frac{\pi}{8} - P \right) + \cos \left( \frac{\pi}{8} - Q \right) + \cos \left( \frac{\pi}{8} - R \right) = P + Q + R = \frac{\pi}{4}.
\]
Using the sum-to-product identity for cosines:
\[
\cos A - \cos B = -2 \sin \left( \frac{A + B}{2} \right) \sin \left( \frac{A - B}{2} \right),
\]
we can express the sum of cosines as a sum of sines, simplifying to:
\[
4 \cos \frac{P}{2} \cos \frac{Q}{2} - \cos \frac{\pi}{8}.
\]
Thus, the correct answer is:
\[
\boxed{4 \cos \frac{P}{2} \cos \frac{Q}{2} - \cos \frac{\pi}{8}}.
\]