To solve the problem, we'll follow these steps:
Step 1: Identify the focus of the parabola
The given parabola is \( y^2 = 12x \). The standard form of a parabola \( y^2 = 4ax \) has its focus at \( (a, 0) \). Comparing with \( y^2 = 12x \), we get:
\[
4a = 12 \implies a = 3
\]
Thus, the focus of the parabola is \( (3, 0) \).
Step 2: Parametrize a point on the parabola
A general point on the parabola \( y^2 = 12x \) can be represented as \( (t^2, 2\sqrt{3}t) \), where \( t \) is a parameter. This satisfies the equation:
\[
(2\sqrt{3}t)^2 = 12(t^2)
12t^2 = 12t^2
\]
Step 3: Find the coordinates of \( P \)
The point \( P \) divides the line segment joining the focus \( (3, 0) \) and the point on the parabola \( (t^2, 2\sqrt{3}t) \) in the ratio \( 1:2 \). Using the section formula, the coordinates of \( P \) are:
\[
P = \left( \frac{2 \cdot 3 + 1 \cdot t^2}{1 + 2}, \frac{2 \cdot 0 + 1 \cdot 2\sqrt{3}t}{1 + 2} \right)
P = \left( \frac{6 + t^2}{3}, \frac{2\sqrt{3}t}{3} \right)
P = \left( 2 + \frac{t^2}{3}, \frac{2\sqrt{3}t}{3} \right)
\]
Let \( P = (x, y) \). Then:
\[
x = 2 + \frac{t^2}{3} \quad \text{(1)}
y = \frac{2\sqrt{3}t}{3} \quad \text{(2)}
\]
Step 4: Eliminate the parameter \( t \)
From equation (2), solve for \( t \):
\[
y = \frac{2\sqrt{3}t}{3}
t = \frac{3y}{2\sqrt{3}}
t = \frac{\sqrt{3}y}{2}
\]
Substitute \( t = \frac{\sqrt{3}y}{2} \) into equation (1):
\[
x = 2 + \frac{\left( \frac{\sqrt{3}y}{2} \right)^2}{3}
x = 2 + \frac{\frac{3y^2}{4}}{3}
x = 2 + \frac{y^2}{4}
\]
Rearrange:
\[
x
- 2 = \frac{y^2}{4}
y^2 = 4(x
- 2)
\]
Final Answer:
The locus of \( P \) is \( y^2 = 4(x
- 2) \).
\[
\boxed{y^2 = 4(x
- 2)}
\]