Question:

If \(P(A) = \frac{7}{11}\), \( P(B) = \frac{6}{11} \), and \( P(A \cup B) = \frac{8}{11} \), then \( P(A|B) = \) ?}

Show Hint

Use \( P(A \cup B) = P(A) + P(B) - P(A \cap B) \) to find intersection, then apply \( P(A|B) = \frac{P(A \cap B)}{P(B)} \).
Updated On: May 4, 2025
  • \( \frac{3}{5} \)
  • \( \frac{2}{3} \)
  • \( \frac{1}{2} \)
  • \( \frac{5}{6} \)
Hide Solution
collegedunia
Verified By Collegedunia

The Correct Option is D

Solution and Explanation

We use the formula: \[ P(A \cup B) = P(A) + P(B) - P(A \cap B) \Rightarrow \frac{8}{11} = \frac{7}{11} + \frac{6}{11} - P(A \cap B) \Rightarrow P(A \cap B) = \frac{13}{11} - \frac{8}{11} = \frac{5}{11} \] Then, \[ P(A|B) = \frac{P(A \cap B)}{P(B)} = \frac{5/11}{6/11} = \frac{5}{6} \]
Was this answer helpful?
0
0

Top Questions on Conditional Probability

View More Questions