Let's solve the problem utilizing probability concepts and ensure a step-by-step approach with clear explanations. The task is to find \( n^2 - m^2 \) where \( \frac{m}{n} \) is the probability that a coin drawn from the bag is unbiased, given that heads turn up.
The bag contains a total of 20 coins: 19 unbiased coins and one coin with two heads.
When a coin is drawn at random, the probability of drawing the unbiased coin is \( \frac{19}{20} \) and the two-headed coin is \( \frac{1}{20} \).
For obtaining heads:
Using Bayes' theorem, calculate the probability that the drawn coin is unbiased given that heads appear:
\[P(\text{Unbiased} \mid \text{Heads}) = \frac{P(\text{Heads} \mid \text{Unbiased}) \cdot P(\text{Unbiased})}{P(\text{Heads})}\]Substitute these into the Bayes' theorem formula:
\[P(\text{Unbiased} \mid \text{Heads}) = \frac{\frac{1}{2} \cdot \frac{19}{20}}{\frac{21}{40}} = \frac{\frac{19}{40}}{\frac{21}{40}} = \frac{19}{21}\]Thus, \( \frac{m}{n} = \frac{19}{21} \) where \( m = 19 \) and \( n = 21 \).
Calculate \( n^2 - m^2 \):
\[n^2 - m^2 = 21^2 - 19^2 = (21 + 19)(21 - 19) = 40 \times 2 = 80\]Therefore, the answer is 80.
Step 1: Understanding the problem.
We are given that there are 19 unbiased coins and 1 biased coin in the bag. The problem asks for the probability that the drawn coin was unbiased given that heads turned up. This is a conditional probability problem, and we can apply Bayes' Theorem to solve it.
Let:
- \( A \) be the event that the coin drawn is unbiased.
- \( B \) be the event that heads turns up. We are required to find \( P(A | B) \), the probability that the coin is unbiased given that heads turned up.
According to Bayes' Theorem: \[ P(A | B) = \frac{P(B | A) P(A)}{P(B)} \]
Step 2: Finding individual probabilities.
\( P(A) = \frac{19}{20} \), the probability of drawing an unbiased coin. \( P(B | A) = \frac{1}{2} \), the probability of getting heads when the coin is unbiased. \( P(B | A^c) = 1 \), the probability of getting heads when the coin is biased (since both sides are heads). \( P(A^c) = \frac{1}{20} \), the probability of drawing the biased coin. Now, calculate \( P(B) \), the total probability of getting heads: \[ P(B) = P(B | A) P(A) + P(B | A^c) P(A^c) \] \[ P(B) = \left(\frac{1}{2}\right) \left(\frac{19}{20}\right) + 1 \left(\frac{1}{20}\right) \] \[ P(B) = \frac{19}{40} + \frac{1}{20} = \frac{19}{40} + \frac{2}{40} = \frac{21}{40} \]
Step 3: Using Bayes' Theorem.
Now, applying Bayes' Theorem: \[ P(A | B) = \frac{P(B | A) P(A)}{P(B)} = \frac{\left(\frac{1}{2}\right) \left(\frac{19}{20}\right)}{\frac{21}{40}} \] \[ P(A | B) = \frac{\frac{19}{40}}{\frac{21}{40}} = \frac{19}{21} \] This gives the probability that the coin was unbiased as \( \frac{19}{21} \). So, \( m = 19 \) and \( n = 21 \).
Step 4: Finding \( n^2 - m^2 \).
Now we calculate \( n^2 - m^2 \): \[ n^2 - m^2 = 21^2 - 19^2 = (21 + 19)(21 - 19) = 40 \times 2 = 80 \]
Given three identical bags each containing 10 balls, whose colours are as follows:
| Bag I | 3 Red | 2 Blue | 5 Green |
| Bag II | 4 Red | 3 Blue | 3 Green |
| Bag III | 5 Red | 1 Blue | 4 Green |
A person chooses a bag at random and takes out a ball. If the ball is Red, the probability that it is from Bag I is $ p $ and if the ball is Green, the probability that it is from Bag III is $ q $, then the value of $ \frac{1}{p} + \frac{1}{q} $ is:
A gardener wanted to plant vegetables in his garden. Hence he bought 10 seeds of brinjal plant, 12 seeds of cabbage plant, and 8 seeds of radish plant. The shopkeeper assured him of germination probabilities of brinjal, cabbage, and radish to be 25%, 35%, and 40% respectively. But before he could plant the seeds, they got mixed up in the bag and he had to sow them randomly.
