Step 1: Understanding the problem.
We are given that there are 19 unbiased coins and 1 biased coin in the bag. The problem asks for the probability that the drawn coin was unbiased given that heads turned up. This is a conditional probability problem, and we can apply Bayes' Theorem to solve it.
Let:
- \( A \) be the event that the coin drawn is unbiased.
- \( B \) be the event that heads turns up. We are required to find \( P(A | B) \), the probability that the coin is unbiased given that heads turned up.
According to Bayes' Theorem: \[ P(A | B) = \frac{P(B | A) P(A)}{P(B)} \]
Step 2: Finding individual probabilities.
\( P(A) = \frac{19}{20} \), the probability of drawing an unbiased coin. \( P(B | A) = \frac{1}{2} \), the probability of getting heads when the coin is unbiased. \( P(B | A^c) = 1 \), the probability of getting heads when the coin is biased (since both sides are heads). \( P(A^c) = \frac{1}{20} \), the probability of drawing the biased coin. Now, calculate \( P(B) \), the total probability of getting heads: \[ P(B) = P(B | A) P(A) + P(B | A^c) P(A^c) \] \[ P(B) = \left(\frac{1}{2}\right) \left(\frac{19}{20}\right) + 1 \left(\frac{1}{20}\right) \] \[ P(B) = \frac{19}{40} + \frac{1}{20} = \frac{19}{40} + \frac{2}{40} = \frac{21}{40} \]
Step 3: Using Bayes' Theorem.
Now, applying Bayes' Theorem: \[ P(A | B) = \frac{P(B | A) P(A)}{P(B)} = \frac{\left(\frac{1}{2}\right) \left(\frac{19}{20}\right)}{\frac{21}{40}} \] \[ P(A | B) = \frac{\frac{19}{40}}{\frac{21}{40}} = \frac{19}{21} \] This gives the probability that the coin was unbiased as \( \frac{19}{21} \). So, \( m = 19 \) and \( n = 21 \).
Step 4: Finding \( n^2 - m^2 \).
Now we calculate \( n^2 - m^2 \): \[ n^2 - m^2 = 21^2 - 19^2 = (21 + 19)(21 - 19) = 40 \times 2 = 80 \]
Given three identical bags each containing 10 balls, whose colours are as follows:
Bag I | 3 Red | 2 Blue | 5 Green |
Bag II | 4 Red | 3 Blue | 3 Green |
Bag III | 5 Red | 1 Blue | 4 Green |
A person chooses a bag at random and takes out a ball. If the ball is Red, the probability that it is from Bag I is $ p $ and if the ball is Green, the probability that it is from Bag III is $ q $, then the value of $ \frac{1}{p} + \frac{1}{q} $ is:
Let \( A = \{-3, -2, -1, 0, 1, 2, 3\} \). A relation \( R \) is defined such that \( xRy \) if \( y = \max(x, 1) \). The number of elements required to make it reflexive is \( l \), the number of elements required to make it symmetric is \( m \), and the number of elements in the relation \( R \) is \( n \). Then the value of \( l + m + n \) is equal to:
For hydrogen-like species, which of the following graphs provides the most appropriate representation of \( E \) vs \( Z \) plot for a constant \( n \)?
[E : Energy of the stationary state, Z : atomic number, n = principal quantum number]