Step 1: Recall properties of the cross product.
For any vector $ \overline{a} = a_1\overline{i} + a_2\overline{j} + a_3\overline{k} $, the cross products with the standard basis vectors are:
$$
\overline{a} \times \overline{i} = a_3\overline{j} - a_2\overline{k}, \quad
\overline{a} \times \overline{j} = a_1\overline{k} - a_3\overline{i}, \quad
\overline{a} \times \overline{k} = a_2\overline{i} - a_1\overline{j}.
$$
The magnitudes squared are:
$$
|\overline{a} \times \overline{i}|^2 = (a_3)^2 + (-a_2)^2 = a_3^2 + a_2^2,
$$
$$
|\overline{a} \times \overline{j}|^2 = (a_1)^2 + (-a_3)^2 = a_1^2 + a_3^2,
$$
$$
|\overline{a} \times \overline{k}|^2 = (a_2)^2 + (-a_1)^2 = a_2^2 + a_1^2.
$$
Step 2: Sum the magnitudes squared.
Add these expressions:
$$
|\overline{a} \times \overline{i}|^2 + |\overline{a} \times \overline{j}|^2 + |\overline{a} \times \overline{k}|^2 = (a_3^2 + a_2^2) + (a_1^2 + a_3^2) + (a_2^2 + a_1^2).
$$
Combine like terms:
$$
|\overline{a} \times \overline{i}|^2 + |\overline{a} \times \overline{j}|^2 + |\overline{a} \times \overline{k}|^2 = 2(a_1^2 + a_2^2 + a_3^2).
$$
Step 3: Use the fact that $ \overline{a} $ is a unit vector.
Since $ \overline{a} $ is a unit vector, its magnitude is 1:
$$
|\overline{a}|^2 = a_1^2 + a_2^2 + a_3^2 = 1.
$$
Thus:
$$
|\overline{a} \times \overline{i}|^2 + |\overline{a} \times \overline{j}|^2 + |\overline{a} \times \overline{k}|^2 = 2(a_1^2 + a_2^2 + a_3^2) = 2 \cdot 1 = 2.
$$
Step 4: Final Answer.
$$
\boxed{2}
$$