Let the quadratic polynomial be \(f(x) = (\alpha - 1)x^2 + \alpha x + 1\).
Given that one of the zeroes is \(-3\), we can substitute \(x = -3\) into the equation:
\[ f(-3) = (\alpha - 1)(-3)^2 + \alpha(-3) + 1 = 0 \]
Simplifying:
\[ (\alpha - 1)(9) - 3\alpha + 1 = 0 \]
\[ 9\alpha - 9 - 3\alpha + 1 = 0 \]
\[ 6\alpha - 8 = 0 \]
Solve for \(\alpha\):
\[ 6\alpha = 8 \implies \alpha = \frac{8}{6} = \frac{4}{3} \]
Thus, \(\alpha = \frac{4}{3}\).