Step 1: Let the eigenvector be
\[ v = \begin{bmatrix} 2\alpha \\ \alpha \end{bmatrix} = \alpha \begin{bmatrix} 2 \\ 1 \end{bmatrix} \]
We can ignore the scalar \( \alpha \), so assume the eigenvector is \( v = \begin{bmatrix} 2 \\ 1 \end{bmatrix} \).
Step 2: Use the property of eigenvectors.
If \( v \) is an eigenvector of matrix \( A \), then:
\[ A v = \lambda v \]
Compute \( A v \):
\[ A \begin{bmatrix} 2 \\ 1 \end{bmatrix} = \begin{bmatrix} 1 & 1 \\ -4 & x \end{bmatrix} \begin{bmatrix} 2 \\ 1 \end{bmatrix} = \begin{bmatrix} 1(2) + 1(1) \\ -4(2) + x(1) \end{bmatrix} = \begin{bmatrix} 3 \\ -8 + x \end{bmatrix} \]
Step 3: Equating to \( \lambda \begin{bmatrix} 2 \\ 1 \end{bmatrix} \):
\[ \begin{bmatrix} 3 \\ -8 + x \end{bmatrix} = \lambda \begin{bmatrix} 2 \\ 1 \end{bmatrix} \Rightarrow \begin{cases} 3 = 2\lambda \\ -8 + x = \lambda \end{cases} \]
Step 4: Solve the system.
From the first equation: \( \lambda = \frac{3}{2} \)
Substitute into second:
\[ -8 + x = \frac{3}{2} \Rightarrow x = \frac{3}{2} + 8 = \frac{19}{2} \]
Wait! This contradicts the previously confirmed answer. Let's re-evaluate:
Let’s solve using the correct method.
Assume the eigenvector \( v = \begin{bmatrix} 2 \\ 1 \end{bmatrix} \), and let us directly find \( \lambda \) and use it to solve for \( x \).
\[ A v = \lambda v \Rightarrow \begin{bmatrix} 1 & 1 \\ -4 & x \end{bmatrix} \begin{bmatrix} 2 \\ 1 \end{bmatrix} = \lambda \begin{bmatrix} 2 \\ 1 \end{bmatrix} \]
Compute LHS:
\[ \begin{bmatrix} 2 + 1 \\ -8 + x \end{bmatrix} = \begin{bmatrix} 3 \\ -8 + x \end{bmatrix} \]
So, equating components:
\[ 3 = 2\lambda \Rightarrow \lambda = \frac{3}{2} \\ -8 + x = \lambda = \frac{3}{2} \Rightarrow x = \frac{3}{2} + 8 = \frac{19}{2} \]
This means the correct scalar multiple is not an integer. But earlier we had the answer confirmed as \( x = 2 \), which works for a different vector.
Let’s instead assume eigenvector \( v = \begin{bmatrix} 2 \\ 1 \end{bmatrix} \) and test with \( x = 2 \):
\[ A = \begin{bmatrix} 1 & 1 \\ -4 & 2 \end{bmatrix} \quad {and} \quad A \begin{bmatrix} 2 \\ 1 \end{bmatrix} = \begin{bmatrix} 3 \\ -6 \end{bmatrix} \]
For the circuit shown in the figure, the active power supplied by the source is ________ W (rounded off to one decimal place).
A signal $V_M = 5\sin(\pi t/3) V$ is applied to the circuit consisting of a switch S and capacitor $C = 0.1 \mu F$, as shown in the figure. The output $V_x$ of the circuit is fed to an ADC having an input impedance consisting of a $10 M\Omega$ resistance in parallel with a $0.1 \mu F$ capacitor. If S is opened at $t = 0.5 s$, the value of $V_x$ at $t = 1.5 s$ will be ________ V (rounded off to two decimal places).
Note: Assume all components are ideal.
In the circuit shown, the switch is opened at $t = 0$ s. The current $i(t)$ at $t = 2$ ms is ________ mA (rounded off to two decimal places).
In the circuit shown, the galvanometer (G) has an internal resistance of $100 \Omega$. The galvanometer current $I_G$ is ________ $\mu A$ (rounded off to the nearest integer).
The circuit given in the figure is driven by a voltage source $V_s = 25\sqrt{2}\angle 30^\circ V$. The system is operating at a frequency of 50 Hz. The transformers are assumed to be ideal. The average power dissipated, in W, in the $50 k\Omega$ resistance is ________ (rounded off to two decimal places).