1. Last digit of \(6^n\) (for \(n \ge 1\)):
\(6^1=6, 6^2=36, 6^3=216, \ldots\) The last digit is always 6.
2. Last digit of \(5^n\) (for \(n \ge 1\)):
\(5^1=5, 5^2=25, 5^3=125, \ldots\) The last digit is always 5.
3. We need the last digit of (\text{a number ending in 6}) - (\text{a number ending in 5}).
This will be a number ending in \(6-5 = 1\).
Example for \(n=1\): \(6-5=1\).
Example for \(n=2\): \(36-25=11\) (ends in 1).