If \(n\) is an integer, is \(n\) even?
(1) 2n is an even integer.
(2) n − 1 is an odd integer.
For any natural number $k$, let $a_k = 3^k$. The smallest natural number $m$ for which \[ (a_1)^1 \times (a_2)^2 \times \dots \times (a_{20})^{20} \;<\; a_{21} \times a_{22} \times \dots \times a_{20+m} \] is: