1. Step 1: The given series can be expressed as:
\( S = \sum_{k=0}^n \big(2n + 1 - 2k\big) \binom{n}{k}. \)
2. Step 2: Split the summation into two parts:
\( S = (2n + 1) \sum_{k=0}^n \binom{n}{k} - 2 \sum_{k=0}^n k \binom{n}{k}. \)
3. Step 3: Use the binomial summation properties:
4. Step 4: Substitute these results:
\( S = (2n + 1) \cdot 2^n - 2 \cdot n \cdot 2^{n-1}. \)
5. Step 5: Simplify:
\( S = (2n + 1) \cdot 2^n - n \cdot 2^n = (n + 1) \cdot 2^n. \)
6. Additionally: Consider \( f(x) = (1 + x)^n (1 - x)^n = x^{n+1} \), then \( f'(x) = (n + 1)x^n. \)
Substituting \( x = 2 \), we also get the same result.
Thus, the correct answers are (A) and (C).
\[ \left( \frac{1}{{}^{15}C_0} + \frac{1}{{}^{15}C_1} \right) \left( \frac{1}{{}^{15}C_1} + \frac{1}{{}^{15}C_2} \right) \cdots \left( \frac{1}{{}^{15}C_{12}} + \frac{1}{{}^{15}C_{13}} \right) = \frac{\alpha^{13}}{{}^{14}C_0 \, {}^{14}C_1 \cdots {}^{14}C_{12}} \]
Then \[ 30\alpha = \underline{\hspace{1cm}} \]

Which of the following statement(s) is/are correct about the given compound?
