To solve the given integral, we write:
\[ \int \frac{(\cos^n \theta - \cos \theta)^{1/n}}{\cos^{n+1} \theta} \sin \theta \, d\theta \]
First, let's make a substitution. Set \( u = \cos \theta \), then \( du = -\sin \theta \, d\theta \), which transforms \(\sin \theta \, d\theta\) into \(-du\).
Substitute these into the integral:
\[ -\int \frac{(u^n-u)^{1/n}}{u^{n+1}} \, du \]
Now, observe that:
\[ (u^n-u)^{1/n} = (u^n(1-\frac{1}{u^{n}}))^{1/n} = u(1-u^{1-n})^{1/n} \]
Substitute this back:
\[ -\int \frac{u(1-u^{1-n})^{1/n}}{u^{n+1}} \, du = -\int \frac{(1-u^{1-n})^{1/n}}{u^n} \, du \]
Now let's rationalize this in terms of a standard form. The resulting integral is related to a beta and incomplete beta function, or transformations resembling power functions \( (1-x)^{\alpha} \). Integrate using the substitution method:
Consider:
\[ x = 1-u^{1-n}, \quad dx = -(1-n)u^{-n}(u^{1-n})^{-2} \, du \]
For small manipulations, the integral simplifies into a functional based form:
\[ -\frac{1}{n-1} \int x^{1/n} \, du \]
Substituting back and integrating by recognizing power transformations gives:
\[ \frac{n}{1-n^2}(1-\cos^{1-n}\theta)^{(n+1)/n} + c \]
Thus, the solution is concluded to the equivalent form:
\[ \frac{n}{1 - n^2} \left( 1 - \cos^{(1-n)}\theta \right)^{(n+1)/n} + c \]
Matching the given options, this integral results in:
If \( \vec{u}, \vec{v}, \vec{w} \) are non-coplanar vectors and \( p, q \) are real numbers, then the equality:
\[ [3\vec{u} \quad p\vec{v} \quad p\vec{w}] - [p\vec{v} \quad \vec{w} \quad q\vec{u}] - [2\vec{w} \quad q\vec{v} \quad q\vec{u}] = 0 \]
holds for:
Let \(\mathbf{a}, \mathbf{b}, \mathbf{c}\) be position vectors of three non-collinear points on a plane. If
\[ \alpha = \left[\mathbf{a} \quad \mathbf{b} \quad \mathbf{c}\right] \text{ and } \mathbf{r} = \mathbf{a} \times \mathbf{b} - \mathbf{c} \times \mathbf{b} - \mathbf{a} \times \mathbf{c}, \]
Then \(\frac{|\alpha|}{|\mathbf{r}|}\) represents:
If
\[ P = (a \times \mathbf{i})^2 + (a \times \mathbf{j})^2 + (a \times \mathbf{k})^2 \]
and
\[ Q = (a \cdot \mathbf{i})^2 + (a \cdot \mathbf{j})^2 + (a \cdot \mathbf{k})^2, \]
Then find the relation between \(P\) and \(Q\).
Given vectors \(\mathbf{a} = \mathbf{i} + \mathbf{j} - 2\mathbf{k}\), \(\mathbf{b} = \mathbf{i} + 2\mathbf{j} - 3\mathbf{k}\), \(\mathbf{c} = 2\mathbf{i} - \mathbf{j} + \mathbf{k}\), and \(\mathbf{r}\) such that
\[ \mathbf{r} \cdot \mathbf{a} = 0, \\ \mathbf{r} \cdot \mathbf{c} = 3, \\ [\mathbf{r} \quad \mathbf{a} \quad \mathbf{b}] = 0, \]
Then find \(|\mathbf{r}|\).
The percentage error in the measurement of mass and velocity are 3% and 4% respectively. The percentage error in the measurement of kinetic energy is: