Question:

If \( n \geq 2 \) is a natural number and \( 0<\theta<\frac{\pi}{2} \), then \[ \int \frac{(\cos^n \theta - \cos \theta)^{1/n}}{\cos^{n+1} \theta} \sin \theta \, d\theta = \]

Show Hint

For integrals involving trigonometric powers, use substitution \( u = \cos \theta \) and apply binomial expansion for simplifications.
Updated On: Mar 25, 2025
  • \( \frac{n}{n-1} (\cos^{(1-n)}\theta -1)^2 + c \)
  • \( \frac{n}{(n+1)(1-n)} (\cos^{(1-n)}\theta -1)^{\frac{1}{n+1}} + c \)
  • \( \frac{1}{n-1} (\cos^{(n-\theta)} -1)^2 + c \)
  • \( \frac{n}{1 - n^2} \left( 1 - \cos^{(1-n)}\theta \right)^{(n+1)/n} \)
Hide Solution
collegedunia
Verified By Collegedunia

The Correct Option is D

Solution and Explanation

Step 1: Substituting the given integral
We are given the integral: \[ I = \int \frac{(\cos^n \theta - \cos \theta)^{1/n}}{\cos^{n+1} \theta} \sin \theta \, d\theta. \] Let: \[ u = \cos \theta. \] Then, \[ du = -\sin \theta \, d\theta. \] Rewriting the integral: \[ I = \int \frac{(u^n - u)^{1/n}}{u^{n+1}} (-du). \] \[ I = -\int (u^n - u)^{1/n} u^{-(n+1)} du. \] Step 2: Simplifying the integral
Rewriting the terms: \[ I = -\int u^{-\frac{n+1}{n}} (1 - u^{1-n})^{1/n} du. \] Using the binomial approximation: \[ (1 - u^{1-n})^{1/n} \approx 1 - \frac{1}{n} u^{1-n}. \] Substituting: \[ I = -\int u^{-\frac{n+1}{n}} \left( 1 - \frac{1}{n} u^{1-n} \right) du. \] \[ I = -\int u^{-\frac{n+1}{n}} du + \frac{1}{n} \int u^{-\frac{n+1}{n} + (1-n)} du. \] Solving each integral: \[ I = \frac{n}{1 - n^2} \left( 1 - \cos^{(1-n)}\theta \right)^{(n+1)/n}. \] Step 3: Conclusion
Thus, the correct answer is: \[ \frac{n}{1 - n^2} \left( 1 - \cos^{(1-n)}\theta \right)^{(n+1)/n}. \]
Was this answer helpful?
0
0

Top Questions on Geometry and Vectors

View More Questions