To solve the given integral, we write:
\[ \int \frac{(\cos^n \theta - \cos \theta)^{1/n}}{\cos^{n+1} \theta} \sin \theta \, d\theta \]
First, let's make a substitution. Set \( u = \cos \theta \), then \( du = -\sin \theta \, d\theta \), which transforms \(\sin \theta \, d\theta\) into \(-du\).
Substitute these into the integral:
\[ -\int \frac{(u^n-u)^{1/n}}{u^{n+1}} \, du \]
Now, observe that:
\[ (u^n-u)^{1/n} = (u^n(1-\frac{1}{u^{n}}))^{1/n} = u(1-u^{1-n})^{1/n} \]
Substitute this back:
\[ -\int \frac{u(1-u^{1-n})^{1/n}}{u^{n+1}} \, du = -\int \frac{(1-u^{1-n})^{1/n}}{u^n} \, du \]
Now let's rationalize this in terms of a standard form. The resulting integral is related to a beta and incomplete beta function, or transformations resembling power functions \( (1-x)^{\alpha} \). Integrate using the substitution method:
Consider:
\[ x = 1-u^{1-n}, \quad dx = -(1-n)u^{-n}(u^{1-n})^{-2} \, du \]
For small manipulations, the integral simplifies into a functional based form:
\[ -\frac{1}{n-1} \int x^{1/n} \, du \]
Substituting back and integrating by recognizing power transformations gives:
\[ \frac{n}{1-n^2}(1-\cos^{1-n}\theta)^{(n+1)/n} + c \]
Thus, the solution is concluded to the equivalent form:
\[ \frac{n}{1 - n^2} \left( 1 - \cos^{(1-n)}\theta \right)^{(n+1)/n} + c \]
Matching the given options, this integral results in:
If two vectors \( \mathbf{a} \) and \( \mathbf{b} \) satisfy the equation:
\[ \frac{|\mathbf{a} + \mathbf{b}| + |\mathbf{a} - \mathbf{b}|}{|\mathbf{a} + \mathbf{b}| - |\mathbf{a} - \mathbf{b}|} = \sqrt{2} + 1, \]
then the value of
\[ \frac{|\mathbf{a} + \mathbf{b}|}{|\mathbf{a} - \mathbf{b}|} \]
is equal to:
Which of the following are ambident nucleophiles?
[A.] CN$^{\,-}$
[B.] CH$_{3}$COO$^{\,-}$
[C.] NO$_{2}^{\,-}$
[D.] CH$_{3}$O$^{\,-}$
[E.] NH$_{3}$
Identify the anomers from the following.

The standard Gibbs free energy change \( \Delta G^\circ \) of a cell reaction is \(-301 { kJ/mol}\). What is \( E^\circ \) in volts?
(Given: \( F = 96500 { C/mol}\), \( n = 2 \))