To solve this, first find the intersection of the two lines. Parametrize both lines.
For the first line, let:
\[
\frac{x - 1}{2} = \frac{y - 2}{3} = \frac{z - 3}{4} = t.
\]
Thus,
\[
x = 2t + 1, \quad y = 3t + 2, \quad z = 4t + 3.
\]
For the second line, let:
\[
\frac{x - 4}{5} = \frac{y - 1}{2} = z = s.
\]
Thus,
\[
x = 5s + 4, \quad y = 2s + 1, \quad z = s.
\]
Equating the expressions for $x$, $y$, and $z$ from both lines, we solve for $s$ and $t$. Once the intersection point is found, calculate the distance from $(-1, -5, -10)$ to the intersection point using the distance formula:
\[
d = \sqrt{(x_2 - x_1)^2 + (y_2 - y_1)^2 + (z_2 - z_1)^2}.
\]