We are given the equation:
\[
\left( \frac{1 - i}{1 + i} \right)^k = -i
\]
Step 1: Express the complex fraction in polar form
We know that:
\[
\frac{1 - i}{1 + i}
\]
Dividing numerator and denominator by the modulus of \(1 + i\) (which is \( \sqrt{2} \)),
\[
\frac{1 - i}{1 + i} = \frac{(1 - i)(1 - i)}{(1 + i)(1 - i)}
= \frac{(1 - i)^2}{2}
\]
Now,
\[
(1 - i)^2 = 1 - 2i + i^2 = 1 - 2i - 1 = -2i
\]
Thus,
\[
\frac{1 - i}{1 + i} = \frac{-2i}{2} = -i
\]
Step 2: Equating the powers
From the original equation,
\[
(-i)^k = -i
\]
Using the polar form of \( -i = e^{-i \pi/2} \), we have:
\[
(-i)^k = e^{-i \frac{\pi}{2} k}
\]
Equating the arguments,
\[
-\frac{\pi}{2} k = -\frac{\pi}{2} + 2n\pi
\]
Dividing both sides by \( -\frac{\pi}{2} \),
\[
k = 1 + 4n
\]
Step 3: Finding the values of \( k \)
For the least positive integer value, setting \(n = 0\),
\[
k = 1
\]
For the greatest negative integer value, set \(n = -1\),
\[
k = 1 + 4(-1) = -3
\]
Step 4: Compute \( m - n \)
\[
m = 1, \quad n = -3
\]
\[
m - n = 1 - (-3) = 4
\]