\( (l-2)(l+2) = ms - 5 \)
Step 1: Understanding the Given Integrals
We analyze the given integral equations and their recurrence relations: \[ \int_{0}^{\frac{\pi}{2}} \sin^n x \cos^r x \, dx = 4 \int_{0}^{\frac{\pi}{2}} \sin^m x \cos^r x \, dx. \] Using reduction formulas for trigonometric integrals: \[ I(n, r) = \frac{n-1}{r+1} I(n-2, r). \] Similarly, \[ I(l, r) = \frac{l-1}{r+1} I(l-2, r). \] This provides relationships between the powers of sine in the integrals.
Step 2: Deriving the Relationship
Given: \[ I(n, r) = 4 I(m, r), \quad I(l, r) = 4 I(s, r), \quad I(n, r) = 0. \] Using recurrence properties, \[ (n-1)(s+1) = 4(m-1)(r+1), \] \[ (l-1)(s+1) = 4(s-1)(r+1). \] Rearranging, \[ (s-2)(s+2) = ln - 3. \]
Step 3: Conclusion
Thus, the correct answer is: \[ \mathbf{(s-2)(s+2) = ln - 3}. \]