Question:

If \(m\cos(\alpha + \beta) - n\cos(\alpha - \beta) = m\cos(\alpha - \beta) + n\cos(\alpha + \beta)\), then \(\tan \alpha \tan \beta\) is:

Show Hint

For equations involving trigonometric identities, always consider rewriting them using basic sine and cosine formulas to facilitate the process.
Updated On: Mar 11, 2025
  • \(m + n\)
  • \(m - n\)
  • \(-\frac{n}{m}\)
  • \(\frac{m}{n}\)
Hide Solution
collegedunia
Verified By Collegedunia

The Correct Option is C

Solution and Explanation

Step 1: Simplify the given equation.
\[ m\cos(\alpha + \beta) - n\cos(\alpha - \beta) = m\cos(\alpha - \beta) + n\cos(\alpha + \beta) \] \[ m\cos(\alpha + \beta) - m\cos(\alpha - \beta) = n\cos(\alpha + \beta) + n\cos(\alpha - \beta) \] \[ m[\cos(\alpha + \beta) - \cos(\alpha - \beta)] = n[\cos(\alpha + \beta) + \cos(\alpha - \beta)] \] Step 2: Apply trigonometric identities for sum and difference of angles.
Using \(\cos(\alpha + \beta) - \cos(\alpha - \beta) = -2\sin \alpha \sin \beta\) and \(\cos(\alpha + \beta) + \cos(\alpha - \beta) = 2\cos \alpha \cos \beta\): \[ -2m\sin \alpha \sin \beta = 2n\cos \alpha \cos \beta. \] \[ \frac{\sin \alpha \sin \beta}{\cos \alpha \cos \beta} = -\frac{n}{m}. \] Step 3: Conclude with the value of \(\tan \alpha \tan \beta\).
\[ \tan \alpha \tan \beta = \frac{\sin \alpha \sin \beta}{\cos \alpha \cos \beta} = -\frac{n}{m}. \]
Was this answer helpful?
0
0