Question:

If $\sec \theta=m$ and $\tan \theta=n$ , then $\frac{1}{m}\left[(m+n)+\frac{1}{(m+n)}\right] $ is :

Updated On: Apr 18, 2024
  • 2
  • 2 m
  • 2 n
  • mn
Hide Solution
collegedunia
Verified By Collegedunia

The Correct Option is A

Solution and Explanation

Given that $\sec\theta =m \tan\theta = n $
$\therefore \frac{1}{m} \left[\left(m+n\right) + \frac{1}{\left(m+n\right)}\right] $
$ = \frac{1}{\sec\theta} \left[\sec\theta + \tan\theta + \frac{1}{\sec\theta +\tan \theta}\right]$
$ = \frac{\left[\sec^{2} \theta + \tan^{2} \theta +2 \sec\theta \tan\theta+1\right]}{\sec\theta\left(\sec\theta +\tan\theta\right)} $
$= \frac{2 \sec^{2} \theta + 2 \sec\theta \tan \theta}{\sec\theta \left(\sec\theta + \tan \theta\right)} $
$ = \frac{2 \sec\theta \left(\sec \theta + \tan \theta\right)}{\sec \theta \left(\sec\theta + \tan \theta\right)} $
$ = 2 $
Was this answer helpful?
0
1

Concepts Used:

Trigonometric Identities

Various trigonometric identities are as follows:

Even and Odd Functions

Cosecant and Secant are even functions, all the others are odd.

  • sin (-A) = – sinA,
  • cos (-A) = cos A,
  • cosec (-A) = -cosec A,
  • cot (-A) = -cot A,
  • tan (-A) = – tan A,
  • sec (-A) = sec A.

Pythagorean Identities

  1. sin2θ + cos2θ = 1
  2. 1 + tan2θ = sec2θ
  3. 1 + cot2θ = cosec2θ

Periodic Functions

  1. T-Ratios of (2π + x)
    sin (2π + x) = sin x,
    cos (2π + x) = cos x,
    tan (2π + x) = tan x,
    cosec (2π + x) = cosec x,
    sec (2π + x) = sec x,
    cot (2π+x)=cotx.
  2. T-Ratios of (π -x)
    sin (π–x) = sin x,
    cos (π–x) = - cos x,
    tan (π–x) = - tan x,
    cosec (π–x) = cosec x,
    sec (π–x) = - sec x,
    cot (π–x) = - cot x.
  3. T-Ratios of (π+ x)
    sin (π+x) = - sin x,
    cos (π+x) = - cos x,
    tan (π+x) = tan x,
    cosec (π+x) = - cosec x,
    sec (π+x) = - sec x,
    cot (π+x) = cot x.
  4. T-Ratios of (2π – x)
    sin (2π–x) = - sin x,
    cos (2n–x) = cos x,
    tan (2π–x) = - tan x,
    cosec (2π–x) = - cosec x,
    sec (2π–x) = sec x,
    cot (2π-x) = - cot x

Sum and Difference Identities

  1. T-Ratios of (x + y)
    sin (x+y) = sinx.cosy + cosx.sin y
    cos (x+y) = cosx.cosy – sinx.siny
  2. T-Ratios of (x – y)
    sin (x–y) = sinx.cosy – cos.x.sin y
    cos (x-y) = cosx.cosy + sinx.siny

Product of T-ratios

  • 2sinx cosy = sin(x+y) + sin(x–y)
  • 2cosx siny = sin(x+y) – sin(x–y)
  • 2 cosx cosy = cos(x+y) + cos(x–y)
  • 2sinx.siny = cos(x–y) – cos(x+y)

T-Ratios of (2x)
sin2x = 2sin x cos x
cos 2x = cos2x – sin2

= 2cos2x – 1 

= 1 – 2sin2x

T-Ratios of (3x)
sin 3x = 3sinx – 4sin3x
cos 3x = 4cos3x – 3cosx